Search

Published After
Published Before

Search Results

  • Effect of cultivation factors on the yield and yield security of maize
    263-265
    Views:
    135

    Cultivation factors have a significant effect on the yield and yield security of maize. Ensuring a suitable green crop is important. Tricultural crop rotation (pea–wheat–maize) in the average of 25 years provided a 2 t ha-1 higher yield compared to monocultural cultivation. A harmonious NPK nutriment supply determines yield and yield security, which can be especially realized by means of the application of precision cultivation technologies. Under average circumstances N 80 kg ha-1, P2O5 50 kg ha-1, K20 60 kg ha-1 active ingredient is the agro-ecological dosage of artificial fertilizer.
    Plant density is a factor that determines yield. Optimal plant density – beside the genetic characteristics of the hybrid – is mostly influenced by the level of water and nutriment supply.

  • The significance of biological bases in maize production
    61-65
    Views:
    170

    The comparative trial has been set up in the Demonstration Garden of the Institute of Crop Sciences of the University of Debrecen, Centre for Agricultural and Applied Economic Studies, Faculty of Agricultural and Food Sciences and Environmental Management in 2012, with 24 hybrids with different genetic characteristics and growing periods. The soil of the trial is lime-coated chernozem, with a humus layer of 50–70 cm.

    The weather of the trial year was quite droughty; the monthly average temperature was 3–4 oC higher than the average of 30 years. High temperature, together with lack of precipitation occurred during the most sensitive phenophases of maize (flowering; fecundation, grain saturation).

    The following characteristics have been observed: starting vigour, date of male and female flowering, plant and cob height, dry-down dynamics during maturation and the change of yield composing elements has also been quantified. The yield was recalculated to 14% moisture content grain yield after harvesting.

    The beginning of the growing period was advantageous, therefore the analysed hybrids could grow a high (above 300 cm) and strong stem. The yield of the hybrids changed between 10.33 and 11.87 t ha-1, but as a result of the unfavourable climatic extremes, their genetic yield potential prevailed only at a rate of 30–40%. However, moisture content by the time of harvesting was good despite its early date (12th September); it remained under below 14% in most cases. Dry-down was measured on a weekly basis between 14th August and 5th September.

    The analysis of the qualitative parameters of the maize hybrids (protein %, oil % and starch %) resulted in significant differences. The most significant difference has been observed in the case of protein content (LSD5%=2.01). Oil content was the most advantageous in the case of hybrids belonging to the mid-late growing group (FAO 400). The X9N655 and 36V74 hybrids had the highest oil content (around 4%), while hybrids P9915 and 37F73 had significantly lower oil content. Starch content was above 70% in the case of every hybrid.

    Hybrid selection is highly important in terms of yield and yield security of maize, as well as the application of modern biological fundamentals and hybrid specific technology for the improvement of the level of cultivation technology.

  • Impact of precision irrigation on the unit income of maize production
    157-162
    Views:
    48

    The study of the economic/economic impact of precision farming should be a priority area in digital agriculture, as the results, profitability, and efficiency indicators can have a significant decision-support effect on the development of both the agronomic and the technical regions of individual farms both in the longer and shorter term. Individual firms, companies, farmers, and family farms quantify the effectiveness of their farming processes. The modern age offers the possibility of digitally recording all the elements of farming technology, making it possible to analyse the cost-effectiveness of a farm more effectively and, in some cases, to carry out more detailed analyses. Nevertheless, the number of farms demonstrating their profitability with such precise economic calculations is still minimal.

    Our analyses were conducted on a 56,02 ha field of Balogh Farm-Tépe Ltd. The agricultural operations carried out were fully documented so that the inputs (seeds, fertilisers, pesticides, crop enhancers) were recorded in coordinates and kind, as well as the specific yields, grain moisture data, irrigation norms, and irrigation rotations. At the same time, the company's owner provided the data's monetary value. The main econometric indicators (yield, production value, cost of production, income, cost price) related to the evaluation of the enterprise management were evaluated along with the spatial data in the irrigated and non-irrigated tables. Our calculations show that a given year's climatic and market characteristics fundamentally determine the cost and income relations of a plot of land (and thus of an entire farm). In addition to additional inputs, introducing some elements of precision farming and intensification and increasing yields improves yield security and allows for excellent yield stability.

  • The effects of drought stress on soybean (Glycine max (L.) Merr.) growth, physiology and quality – Review
    19-24
    Views:
    206

    Abiotic stresses are one of the most limiting factors inhibit plant's growth, leading to a serious production loss. Drought stress is one of the most destructive abiotic stresses and is still increasing year after year resulting in serious yield losses in many regions of the world,
    consequently, affecting world’s food security for the increasing world population. Soybean is an important grain legume. It is one of the five major crops in the world, an essential source of oil, protein, macronutrients and minerals, and it is known as the main source of plant oil and protein. Harvested area of soybean is increasing globally year after year. However, soybean is the highest drought stress sensitive crop, the water deficit influences the physiology, production and seed composition of this crop. We introduce a review for literatures concerning the changes of the above traits of soybean exposed to drought stress, with past explanations for these changes.

  • Harnessing diversity in durum wheat (Triticum turgidum L.) to enhance climate resilience and micronutrient concentration through genetic and agronomic biofortification
    9-20
    Views:
    190

    Huge consumption of wheat-driven food products with low bioavailability and small concentrations of zinc is responsible for zinc-induced malnutrition and associated health complications. The contemporary durum wheat varieties have inherently tiny zinc concentrations in developing grain, which cannot meet the daily human zinc demand. Despite the fact that over two billion people are suffering from iron and zinc-induced malnutrition, various intervention measures have been deployed to reverse the effect of zinc-induced malnutrition on humans. There are evidences that agronomic and genetic biofortification approaches can increase grain yield and nutritional quality (i.e. zinc, iron, protein, and vitamins) of durum wheat to a greater extent. However, there is a lack of direct empirical evidence for which the influence of both biofortification approaches on improving human health. Application of micronutrient-containing fertilizers either in the soil or foliarly is effective in combination with NPK, organic fertilizers coupled with efficient durum wheat varieties, emphasizing the need for integrated soil fertility management (ISFM). Although genetic biofortification is a cost-effective and sustainable approach, agronomic biofortification provides an immediate and effective route to enhancing micronutrient concentrations in durum wheat grain. The application of zinc-containing fertilizers is more effective under drought conditions than in normal growing situations. Hence, this article provides a key information for agronomists and breeders about the potential of biofortification interventions to improve durum wheat yield and enrich the grain qualitative traits to ensure food and nutritional security of the ever-increasing world population.