Search
Search Results
-
Baking quality of winter wheat (Triticum aestivum L.) in the long-term experiments on chernozem soil
152-156Views:100Agriculture has traditionally an important role in Hungarian economy and rural development. About 75 % of Hungary’s total territory
is under agricultural land use. Because of ecological conditions and production traditions cereals (wheat, maize etc) have the greatest
importance in Hungarian crop production. In the 1980’s the country-average yields of wheat were about 5,0-5,5 t ha-1 („industrial-like”
crop production-model). In the 1990’s the yields of wheat dropped to 4,0 t ha-1 because of low input-using and wide application of the issues
of environmental protection and sustainability. Winter wheat production for quality has a decisive role in certain regions of Hungary
(eastern and middle-parts).
The quality of wheat is complex and different. Three major growing factor groups determine the quality of winter wheat: genotype,
agroecological conditions and agrotechnical factors. In wheat production for quality the selection of the variety is the most important
element. Our long-term experiments proved that the quality traits of a variety means the highest (maximum) limit of quality which could not
be exceeded in fact. During the vegetation period of wheat the different ecological and agrotechnical factors could help or on the contrary
could demage the quality parameters of wheat.
The agrotechnical factors determining the baking quality of wheat can be divided into two groups: the first group means the factors with
direct effects on quality (fertilization, irrigation, harvest); the second group contains the elements with indirect effects on quality (crop
rotation, tillage, planting, crop protection).
Appropriate fertilization could help to manifest the maximum of quality parameters of a wheat genotype and could reduce the qualityfluctuation
in unfavourable ecological and agrotechnical conditions. -
Variations in major quality parameters of forage and medium quality winter wheat varieties in storage
249-254Views:148We analysed five parameters (moisture-, protein content, Hagberg’s falling number, wet gluten content and alveographic W (10-4 J) values) and the microbiological changes of four forage and milling III. quality winter wheat varieties (Magor, Hunor, Róna and Kondor) during storage, to determine the tendency, type and volume of the of the change of this five qualitative parameters during storage.
We found that the examined winter wheat varieties retained their moisture, protein content and their Hagberg’s falling number, they did not change during storage.
A slight growth could be experienced in the values of wet gluten content for all the four winter wheat varieties in terms of the duration of storage (129 days). This result proved the theory of after-ripening, when gluten percentage improves qualitatively and quantitatively as well. The value of the quantitative growth was about 10% for all the four winter wheat varieties.
We placed a special emphasis on measuring the alveographic W (10-4 J) values during storage. All the four winter wheat varieties showed decreasing values of about 20-40%.
Microbiological examinations on the four winter wheat varieties showed that mould, mould flora and total germ count remained balanced with some slight variations and they did not change in terms of time under optimal storage conditions. -
Effects of Cropping Year and Artificial Fertilization on Alveographic Quality of GK Öthalom Winter Wheat Variety
126-133Views:114Qualification of winter wheat became more complex for Hungary, after the expansion of the EU. Use of Chopin alveograph is a general method in Western- and Southern Europe. This method is not traditional in Hungary, so determination of alveographic properties of Hungarian winter wheat varieties is very important. Artificial fertilization is one very important component of applied agricultural engineering, which effects winter wheat quality. The another factor is the weather or rather the cropping year, which effects winter wheat quality too. We examined both of them and the alveographic quality of GK Öthalom winter wheat variety between 1996 and 2003.
We found that cropping year has significant effect on the alveographic quality of GK Öthalom winter wheat variety on each treatment of artificial fertilization. We found no connection between quantities of precipitations of vegetation periods and the W values of GK Öthalom.
We found a strong connection in 1999 and 2003 as well as a very strong connection in 1996, 1997 and 2002, between the increase of fertilizer dose and W values of GK Öthalom. Treatments of artificial fertilization had a significant effect to W values of GK Öthalom in 2001 and 2002. The differences between the two methods are because of large standard deviation of the results. -
Examination of the Effect of Cropyear on the Yield Potential and Yield Stability of Winter Wheat Varieties
62-67Views:151Variety selection is one of the most important, determinative elements of sustainable winter wheat production. Yield potential, and yield stability are the most important elements in the variety selection of winter wheat, but baking quality parameters play an important role, too.
Several winter wheat varieties were tested for yield and yield stability on chernozem soil in the Hajdúság (in the eastern part of Hungary), in the 2001-2002-2003-2004 cropyears. The management factors were the same for all cropyears. 15 varieties in early the maturity group, 14 varieties in the middle maturity group and 4 varieties in the late maturity group were tested in the above mentioned cropyears. The climatic conditions were average in 2001, dry in 2002, extremely dry in 2003, and very favourable in 2004.
We obtained 5298-6183 kgha-1 yield from early maturity varieties, 5683-6495 kgha-1 from middle, 5694-6031 kgha-1 from late ones in the average of four years. The cropyears had strong influence on the yields, even on chernozem soil, and were characterized by excellent water – and nutrient – husbandry. Averaging of cropyears and genotypes, we obtained 6984 kgha-1 in 2001 (average cropyear), 5452 kgha-1 in 2002 (dry cropyear), 3120 kgha-1 in 2003 (extremely dry cropyear) and 8400 kgha-1 in 2004 (optimum cropyear), respectively. The yield differences between the minimum and maximum yields were 885 kgha-1 in early varieties, 812 kgha-1 in middle and 337 kgha-1 in late maturity varieties, respectively. The varieties characterized by high yield potential and the varieties characterized by good yield stability were different, so in variety selection we have to take both genetic traits into consideration. There were positive, significant correlations among the yields of winter wheat varieties (early, middle, late), the temperature of spring months. (March-April), and the rainfall of spring months (March-April) (R2=0,703**-0,768** and R2=0,681**-0,749**, respectively). We found a high negative correlation between the temperature of early summer months (May-June) and the yields of wheat varieties (R2= -0,856**- -0,918**).
According to the results of our experiment, it is very important to harmonize yield potential and yield stability in the variety selection of winter wheat. -
Molybdenum - accumulation dynamics of cereals on calcareous chernozem soil
81-85Views:139This work is about the molybdenum-accumulation of cereals analyzing soil and plant samples from a field experiment set in
Nagyhörcsök by Kádár et al. in 1991.
In this long-term field experiment different levels of soil contamination conditions are simulated. Soil and plant samples were collected
from the experiment station to study the behaviour of molybdenum.
In this report results of maize, winter wheat, winter barley and soil analysis are presented. The conclusions are as follows:
– Analysing soil samples from 1991 we have found that roughly half of the molybdenum dose applied is in the form of NH4-acetate+EDTA soluble
– Comparing element content of grain and leaf samples we have experienced that molybdenum accumulation is more considerable in the vegetative plant parts
– Winter wheat accumulated less molybdenum then maize in its vegetative parts. Comparing molybdenum content of winter wheat to winter barley we found that the concentration of the element in wheat was lower by half than in the winter barley. It seemed that molybdenum accumulated to the least degree in winter wheat. -
The examination of the agronomy, the amount of yield, and the yield stability of winter wheat varieties
61-72Views:144Our research was carried out at University of Debrecen Centre for Agricultural Sciences Faculty of Agriculture Institution of Plant Sciences Látókép Research Institute through the breeding year of 2003/2004, 2004/2005 and 2005/2006 using cherrnozem soil. In our research we tested 14 chosen autumn wheat varieties during the three crop years.
The different varieties showed very dissimilar ability of resistance against diseases through the three crop years. We could observe both susceptible and resistant varieties. Susceptible varieties got diseases even in favourable crop years. The observed winter wheat varieties showed higher susceptibility against helminthosporium (21.8%) and leaf rost (16.4%). Among the 14 varieties we experienced the least susceptibility in the case of ‘Gaspard’ and ‘GK Kalász’. The research showed that the disease of fusarium undoubtedly depends on the features of the crop year.
In terms of stem solidity we experienced big differences. Among all the observed winter wheat varieties the mid-late ripening ‘Gaspard’ showed the best results in the average of the three years, only 5.3% was beaten down.
The three ripening group of the winter wheat showed the following average yield in the average of three years: 7065 kg/hectare (early ripening varieties), 7261 kg/hectare (late ripening varieties), 6793 kg/hectare (mid-late ripening varieties). Among all the observed varieties the early ripening ‘Flori 2’ produced the biggest yield (7692 kg/hectare).
During the three crop years we reached very different amounts of yield which means that weather conditions had a telling affect on yield. In 2004 we reached an excellent average yield in all the tree breeding groups because of the favourable weather conditions. In 2005 we had a moderate amount of yield because of the unfavourable weather conditions of winter. The year of 2006 showed the smallest amount of yield which is due to the fact that the plant grew less thick than usually.
There were significant differences among the observed varieties in the term of yield, which can be attributed to dissimilar biological basics.
One of he most important questions is the yield stability of the varieties. We had extremely different results at this field. Speaking in general terms we can state that both weather conditions and genetical abilities have a determining effect on yield. In the case of winter wheat varieties the rate of yield fluctuation was quite big, moving in the interval of 33.7-70.3%. Among all the observed varieties ‘Gaspard’ showed the best yield stability (33.3%). -
Yearly change of Wheat dwarf virus infection rate during 1996-2010 in winter barley
22-28Views:105Yearly change of the infection of Wheat dwarf virus was studied in winter barley during 1996-2010. Surveys were carried out at Kompolt (Rudolf Fleischmann Research Institute, Róbert Károly College), in winter barley breeding lines showing leaf yellowing and stunting symptoms. In 1996, 250 winter barley samples were tested. During the period of 1997–2005, 100 samples were collected in each year. In 2006, 490 winter barley samples were tested. In 2007 and 2008 the number of samples collected was 500 from winter barley. In 2009 year 100, and in 2010 year 100 winter barley samples were collected for virus testing. Virus diagnosis was carried out using DASELISA for the detection of Wheat dwarf virus (WDV), Barley yellow dwarf viruses (BYDV-MAV, BYDV-PAV, BYDV-RMV, BYDV-SGV), and Cereal yellow dwarf virus (CYDV-RPV). During the ten of the last fifteen years, the occurrence of Wheat dwarf virus in infected samples exceeded those of other viruses causing leaf yellowing and dwarfing symptoms. There were years (1997, 2002, 2004, 2007, 2009 and 2010) when only the Wheat dwarf virus played the main role in development of yirus symtoms. A contrasting tendency can be observed between the degrees of infection of WDV and BYDV. With a rise of infection in the WDV, the proportion of BYDV decreased and vice-versa.
-
Efficiency of Fertilization in Sustainable Wheat Production
59-64Views:125In sustainable (wheat) production plant nutrition supply and fertilization play decisive roles among the agrotechnical elements, because of their direct and indirect effects on other agronomical factors.
In long-term experiments, we studied the roles of agroecological, genetic-biological and agrotechnical factors in the nutrient supply, fertilization and its efficiency in wheat production under continental climatic conditions (eastern part of Hungary, Trans-Tisza) on chernozem soil. Our results have proved that there are different (positive and negative) interactions among ecological, biological, and agrotechnical elements of wheat production. These interaction effects could modify the nutrient demand, fertilizer (mainly nitrogen) response of wheat varieties and efficiency of fertilization in wheat production.
The optimum N-doses (+PK) of wheat varieties varied from 60 kg ha-1 (+PK) to 120 kg ha-1 (+PK) depending on cropyears, agrotechnical elements and genotypes. The winter wheat varieties could be classified into 4 groups according to their fertilizer demand, natural and fertilizer utilization, fertilizer response and yield capacity.
Appropriate fertilization (mainly N) of wheat could affect both the quantity and quality of the yield. By using optimum N (+PK) fertilizer doses, we could manifest genetically- coded baking quality traits of winter wheat varieties and reduce quality fluctuation caused by ecological and other management factors. The efficiency of fertilization on different baking quality parameters (wet-gluten, valorigraph index etc) were variety specific (the changes depended on genotypes).
Our long-term experiments proved that appropriate fertilization provides optimum yield, good yield stability and excellent yield quality in sustainable wheat production. We could this get better agronomic and economic fertilization efficiency with less harmful environmental effects. -
Genetic progress in winter wheat quality and quantity parameters
71-75Views:177Wheat production is significant branch of Hungarian crop production (with about 1 million hectares of sowing area). Weather anomalies resulted by climate change have increased the importance of biological basis in wheat production. Yield quality and quantity parameters of three wheat genotypes sown on chernozem soil type after maize pre-crop were studied in a long-term field experiment. Yield amount of the studied genotypes varied between 2894 and 8074 kg ha-1 in 2017 and between 5795 and 9547 kg ha-1 in 2018 depending on the applied treatments. Based on our results it can be stated that in both studied crop years the highest yield increment was realized by the application of the nutrient supply level of N30+PK. As the result of the application of the optimum mineral fertilizer level – in contrast to the control – resulted in significant yield increment in both crop years. The results of the long-term field experiment prove that water utilization of the studied wheat varieties / hybrids was improved by the application of the optimal nutrient supply. Furthermore, the water utilization of the latest genotypes was more favorable by both the control and the optimum nutrient supply level treatments. Analyzing the quality parameters of winter wheat using the NIR method it has been stated that the quality results of the well-known genotype (GK Öthalom) were better than those of the new genotypes. A negative correlation between winter wheat quality and quantity parameters has also been confirmed. As the result of the mineral fertilizer application protein and gluten content of winter wheat increased to a significant extent.
-
Effects of Site on Winter Wheat Quality 2002/2003
100-107Views:142The demand of modern societies for high food quality is evident. Thus, it is important for agriculture to produce row materials that are valuable for nutrition and have favourable characteristics for food processing. For this we need a knowledge about the factors which determine the quality of products. One of the main features of plant production is the “immobility”. This way the characteristics of the field influence the quality of the product, like example winter wheat, which is the main cereal in Hungary and Europe.
The Concordia Co. has charged the Central Laboratory of Debrecen University, Agricultural Centre with laboratory testing of the 2002/2003 winter wheat crop. The samples consist of thirteen winter wheat varieties from six different sites under the same cultivating conditions. Therefore, the important wheat quality factors were analysed solely against site conditions with the use of Győri’s “Z” index, which contains these parameters.
Soils were tested first. In this experiment excepting the negligible differences between the sites, there were no linear relations found between quality factors, productivity and soil features. The case is the same with the relation between precipitation, temperature and quality parameters. However, it must be noted that additional soil analyses are required to interpret the extreme results obtained from Karcag.
The calculated Győri’s Z-index shows relative stability concerning certain varieties, although considerable deviation can be found in varieties related to the sites. According to these results, it can bestated that winter wheat quality was not linearly influenced by soil and weather in the 2002/2003 vegetation period. As the same cultivation technology was used in the experiment, the index was determined by genetic features. It must be noted that these findings are relevant only to this experiment. -
Examination of the effects of the cropyear and the nutrient supply on the quality of winter wheat with the help of Győri’s Z-index
121-125Views:70In the case of winter wheat,the knowledge of several quality features is needed to be able to determine precisely the real quality of the given
wheat. Several systems have been worked out on the qualification of the winter wheat in Hungary and other countries as well. Evaluating the
quality is being made more difficult because the different quality features take part in the development of the quality in different degrees and
the values of the several quality features are in different intervals and these data are different dimension values. On the evidence of the
results, in the case of considering several features,it can be difficult to rank into one concrete quality cathegory. Researchers are trying to
develop complex quality index numbers in order to be able to define the quality more precisely. One of these complex quality index numbers
is Gyıri’s, so called, Z-index.
In three years from 2006 and 2008, we examined the change of the quality features of nine varieties of winter wheat with the help of the
Z-index under the influence of the effects of the different cropyears and the fertilizer treatment. The results show that the Z-index of the
examined varieties of winter wheat were influenced by several factors. Examining the data of the three different breeding years together we
can observe the corrective effect of the different cropyears on the Z-index, and if we examine the three years separately and together, the
differences of the quality features of the different varieties differentiate very well, and with the help of the Z-index the comparison of the
types is easier and perspicuous, and the Z-index represents the different nutrient reactions of the different types as well. On the average of
the three years, the types gave the best results at N120-150+PK nutrient level. Among the nine varieties the best results were given by Mv Suba,
GK Békés and Mv Mazurka in the case of both low and higher nutrient levels. -
Changes in the Sulphur Content of Winter Wheat in a Field Experiment
85-88Views:88The use of superphosphate as P-containing fertiliser decreased in the last years in many countries in accordance with strict air pollution laws, and the S-deposition decreased from the atmosphere to the soil as well.
Winter wheat is the one of the S-demanding plants. Recently, the gradually increasing S absence endanger the formation of required average yield of winter wheat, and has bad effect on its quality.
We examined the effect of treatments on the sulphur-, nitrogen content and the N/S ratio of winter wheat in the whole upperground plant and in the grain and straw at harvest in a arable land sulphur fertilization experiment on brown forest soil (Agricultural Company of Felsőzsolca).
We analysed the samples from spring to harvesting, in the critical phenophases. In this study we discuss only the values from the stooling and stalking and the results of analysis of grain and straw in the harvest.
We experienced that the concentration of sulphur in the whole upperground parts of winter wheat showed increase to the end of vegetation independently of fertilization. The N/S ratio was between 8% and 12% in the beginning of the growth period in the whole upperground plant, while the ratio in the grain at harvest was between 13 and 14%. When we examined the whole upperground plant, stalk and leaf at stalking, we got the highest sulphur content in the leaf. Mostly the middle level sulphur fertilization dose (4 l/ha) increased the sulphur accumulation in the green plant. At total maturing, the greatest part of accumulated sulphur is in the grain, but then the effect of fertilization is less glaring. -
Effect of divided nitrogen and sulfur fertilization on the quality of winter wheat
27-31Views:190The ecological characteristics and agro-ecological conditions in Hungary provide opportunities for quality wheat production. For the successful wheat production besides the favorable conditions; the proper use of expertise and appropriate cultivation techniques are not negligible. Successful cultivation affected by many factors. To some extent we can affect, influence and convert the abiotic factors.
Today, a particularly topical issue is the question of nutrition and that the species’ genetic code can be validated using the appropriate quantity and quality fertilizer. Beyond determining the fertilizer requirements of the winter wheat it is important to align the nutrient to the plant’s nutrient uptake dynamics and to ensure its shared dispensing. In any case, it is important to note the use of autumnal base-fertilizer as complex fertilizer. Hereafter sharing the fertilizer during the growing season with the recommended adequate nitrogen dose.The first top dressing of winter wheat in early spring (the time of tillering) can be made, the second top dressing at the time of stem elongation, and the third top dressing at the end of the blooming can be justified. Determining the rate of fertilizer application depends on the habitat conditions and the specific nutrient needs of plants. In autumn the 1/3 of the planned amount of basic fertilizer should be dispensed (in case of N). During setting our experiment we used 3 doses (0 kg ha-1 N-1 active ingredient; 90 kg ha-1 N-1 active ingredients and 150 kg ha-1 N-1 active ingredient). Application dates beyond the autumn basic fertilization are the following: in one pass in early spring, divided in early spring and the time of run up, early spring and late flowering. In addition to nitrogen the replacement of sulfur gets a prominent role as a result of decreased atmospheric inputs. The proper sulfur supply mainly affects the quality parameters. It influences positively the wheat flour’s measure of value characteristics (gluten properties, volume of bread, dough rheology.
In terms of nitrogen doses; the larger amounts (150 kg ha-1 N-1 drug), is the proposed distributed application, while in the case of lower nitrogen (90 kg ha-1 N-1 drug) in a single pass in the early spring can achieve better results. After using sulfur the quality values among the nutritional parameters that can be associated with gluten properties took up higher values than the samples not treated with sulfur.
-
Analyses of a few physiological parameters of hybrid wheat in the case of different nitrogen supply levels
49-53Views:233The winter wheat is one of the most determinant crops because its role was always important in human’s life. To increase the average yield there are several possibilities, which are still not clear fields of agricultural plant production. Our main goal was to examine the responses of winter wheat genotypes to different amounts of nitrogen supplies. The sowing area of hybrid wheats are increasing, they may have different nutrient nitrogen utilization compared to varieties, and the question arose if it is possible to achieve same yield at lower nitrogen fertilizer application or not.
The present study analyzes the results of winter wheat (Triticum aestivum L.) from tillering growing stage. Under controlled conditions three different wheat hybrids were grown (Hywin, Hystar, Hybiza) with two different amounts of nitrogen supplies (optimal and the fourth part). The dry matter accumulation, relative chlorophyll content and nitrogen content were measured in order to draw conclusions from the different supplies of nitrogen for winter wheat genotypes and their physiological plasticity.
-
Examination of nutrient reaction of winter wheat after sunflower forecrop
9-13Views:159We tested the fertilizer reaction of four different winter wheat varieties in three different crop years, on chernozem soil, in long-term experiment. We examined the optimum fertilizer requirements and the maximum yield of the varieties. According to our results there were significant differences among the years: the yield of the winter wheat varieties changed between 1.4–6.1 t ha-1 in 2013, 3.8–8.6 t ha-1 in 2014 and 3.2–8.6 t ha-1 in 2015. The yield increasing effect of fertilization was significantly different in the tested years. The optimum level of fertilization was determined by, besides the genetic differences among the varieties, the crop year and the extent of fertilization. In milder winter months, due to the higher average temperatures, yields of winter wheat increased compared to an average crop year.
-
The effects of agrotechnological factors on winter wheat yield in humid cropyear
162-167Views:142The effects of crop rotation, nutrien supply and crop protection technologies, as well as the appearance of the main ear- and leafdiseases
(powdery mildew, helminthosporium leaf spot, leaf rust, fusarium) were studied on the crop yields of winter wheat variety MV
Pálma during the 2009/2010 crop year. The experiments were conducted in triculture (pea – wheat – corn) and biculture (wheat – corn), at
five nutrition levels, with the use of three crop protection technologies (extensive, conventional and intensive) at the Látókép Research Site of
the University of Debrecen, Centre of Agricultural Sciences. Our results proved that the appearance of leaf- and ear-diseases were
significant in the wheat cultures during the 2009/2010 crop year, because of the rainy, warmer than usual weather, the lodging, and the huge
vegetative mass developed. The most severe infections by the four examined diseases after pea and corn pre-crops were observed at
extensive crop protection levels, when fertilizers were used at the highest dose.
Following corn pre-crop, in the case of all the three crop protection technologies the maximum rate of wheat yield results were achieved
at N150+PK level. The highest yield was reached at intensive crop protection level (6079 kg ha-1). In triculture, in case of all the three crop
protection technologies the maximum yields were achieved at N50+PK level; in extensive technology 5041 kg·ha-1 yield, in conventional
technology 6190 kg ha-1 yield was realised, while in the intensive technological model the yield was 7228 kg ha-1.
The relationship between yield and fertilizer amounts, the rate of pathogen contaminations, crop protection technologies and pre-crops
was defined with correlation analysis in case of different crop rotations during the 2009/2010 crop year. Based on the results of the
experiment, we found that in stands after corn pre-crop strong positive correlation was established between the crop protection level and the
crop yield (0.543), the nutrient levels and the emergence of the four examined pathogens, and between the nutrient levels and the yield
(0.639). Extremly strong positive correlation was observed between crop protection and yield (0.843) in triculture. Strong positive
correlation was detected between the nutrient levels and the presence of the four examined pathogens, as well as between nutrient and
lodging (0.688). Strong negative correlation was between the crop protection level and the four examined diseases both in biculture and
triculture. -
Advancement of a Common Wheat (Triticum aestivum L.) Selection System
8-11Views:99All the research in Hungary and other countries in Europe focus on improving the quality of crops and increasing the competitiveness of production.
In this respect, we have to advance the conventional technological elements, reduce the application of pesticides and fertilizers, and produce new varieties suitable for environmentally-sound production. In our crop breeding programs, we applied conventional and biotechnological methods (embryo rescue and double haploid methods) in order to get somaclonal and gametoclonal variations.
We produced winter wheat lines (HP-31-95, HP-82-96) by traditional way, which have high baking qualities and high nutrient efficiency. Some diseases can limit the quantity and quality of a wheat crop. We examined several wheat diseases in our winter wheat candidates, and we found that our progenies have resistance to leaf rust.
With respect to a serious problem was the small quantity of applied fertilizers and the other externals, our research focused onto advance a common wheat selection system, with the help of it, we can handle these problems. We have summarized that our selected progenies can compete with the registered varieties with quality and environmental respect. -
Correlations of the growth indexes and yield of winter wheat in a long-term experiment
139-144Views:152The experiments were carried out at the Látókép experimental station of the Centre for Agricultural Sciences of University of Debrecen on chernozem soil in a long term winter wheat experiment. As forecrop rotation, we set up two models: a biculture (wheat and corn) and a triculture (pea, wheat and corn). We applied three levels of nutrients during the fertilization process (control, N50P35K40 and N150P105K120). The third variable studied was irrigation in case of which we tested non-irrigated variables (Ö1) and irrigation variables complemented up to the optimum (Ö3).
The effect of pre-crops, irrigation and nutrient-supply levels on some growth-parameters (LAI, LAD), weight of dry matter, just as SPADvalues and yield amounts of winter wheat has been investigated in this experiment. We tried to find out the extent of relationship between the different parameters, and we used the correlation analysis. The correlation analyses have confirmed that all of the investigated parameters had almost in all cases close positive correlation to the yield amount. These results have confirmed that the leaf area, the leaf duration, the SPADvalues, the fertilization and the forecrop have altogether resulted in the production of maximum grain yields.
-
Analysis of the photosynthetic parameters, the yield and the quality of winter wheat
101-106Views:186The environmental adaptability of crop production is basically determined by the selection of biological background (plant species and
varieties) suitable for the region and the site. The aim of our work is to parametrize the plant assimilation, its intensity, dynamics and the
most important characteristics and the relationships to the quality in winter wheat trials. The measurements were carried out at the research
site of the University of Debrecen in small parcel experiments. We measured the leaf net CO2 assimilation rate, stomatal conductance,
intercellular CO2 level, the transpiration, the leaf temperature and the air temperature by the LICOR LI-6400 portable photosynthesis
system in field trials on the nutrient supply. The soil of the experimental area is calciferous chernozem with favorable water regime.
We have examined the photosynthetic activity, the productivity and yield stability of winter wheat varieties. We have compared the yield
results, at similar agrotechnical conditions in seven cropyears. We also determined the quality parameters of the winter wheat varieties.
Then we valued the yield stability of genotypes with the help of analysis of variance and linear regression equations. We have defined the
connections between assimilation parameters, the yield stability and quality parameters of wheat varieties. -
Effects of production factors on the yield and yield component of winter wheat
26-31Views:90The effect of major production factors (forecrop, fertilisation, irrigation, soil cultivation and soil preparation) on the yield components and yield of winter wheat were studied in a long-term experiment set up at the Látókép Experimental Nursery of the Agricultural Sciences Centre of the University of Debrecen. The results of regression analysis led to the following conclusions:
• In our experiments in 2000, after using maize as a forecrop –based on the results of analysis of regression – fertilisation determined the yield.
• After using pea as a forecrop, a N50 P35 K40 kg/ha fertiliser rate led to an economical increase in the yield of winter wheat.
• None of the determinative yield components varied significantly for winter wheat produced after using pea as a forecrop.
• There is a closed, significant correlation between plant height, spike length, plant and spike mass, the number of spikelets and grains per spike after using maize as forecrop. The thousand grain mass is different from the other yield components, because it is not part of the relation system of
those yield components.
• The increased yield of winter wheat after maize has been used as a forecrop is due to the positive change in grain number per spike yield component. -
Research on rheological characteristics of winter wheat varieties
266-272Views:192The gluten examination test is dominant in Hungary, comparing it to the qualification system of other countries. The determination of alveographic parameters is a basic criterion of winter wheat specifications in some western and southern European countries.
In the Hungarian and foreign winter wheat qualification systems, in the standards, there is no limit for extensographical parameters. Customers dictate the limits and make their claims as to the specifications.
We analyzed the alveographic and extensographical parameters of 19 winter wheat varieties grown by the Cereal Research Non-Profit Company in Hungary, and we made a comparison between the results in the challenges of the European Union expectations.
Examining the information of alveographic and extensographical values, we found that the experimental varieties provide high base to flour types suitable for baking bread and baker’s ware. The GK Élet, GK Petur, GK Memento, GK Csillag, GK Kapos and GK Marcel varieties can meet the market of paste flour needs, too.
In the variety series, the GK Kalász represents the highest values and the GK Garaboly shows the lowest parameters regarding the alveographic W and the resistance to extension.
On the basis of relation, we can establish that we can estimate the following little known and used quality indexes: the extensographical resistance to extension with extensographical energy and the alveographic W value, the extensographical energy with the alveographic W value and the alveographic P and L values with the other alveographic parameters. -
Effect of weather conditions on the protein content and baking value of winter wheat flour
83-94Views:147We searched for connections between weather conditions (with its sub-parameters as precipitation and average temperature) and the yearly formation of two quality parameters (protein content and baking value) on three levels of mineral fertilization, based on the results of a variety comparison experiment on chernozem soil, to select those weather parameters and critical periods which have significant effects on the quality of winter wheat flour.
We established that the protein content of winter wheat flour can be increased with increasing levels of mineral fertilizers. Protein content is lower and has higher deviation during non-fertilized conditions in different cropping years than on higher fertilization levels. Thus, it seems proved again that quality (as protein content) is mainly formed by the crop year, but can be improved with adequate agricultural engineering (with mineral fertilization in the present case). The higher sum of precipitation in May, and the lower average temperature after flowering, have the highest increasing effect on the protein content of flour of the examined parameters. Based on the results of the examined period, the rainier and warmer term than average before flowering and lower – average amount of precipitation and colder circumstances are favourable for higher baking values. The analysis with data of decades, proves the importance of the first half of May and the middle of June as especially important periods for quality formation. An increasing nutrient supply has different effects on the varieties; mineral fertilization increased the baking value of GK Öthalom winter wheat variety in almost every case, but the second level of fertilization decreased it in half of the examined years. Additionally, mineral fertilization played a role in the stabilization of the quality of highlighted varieties. -
The influence of fraction size on the chemical composition of winter wheat flour
123-126Views:105Wheat is one of the most important cereals in the world and the bread made of its flour belongs to the everyday life of human mankind.
The Hungarian standard relating to the laboratory production of wheat flour (MSZ 6367/9-1989) does not mention the type of laboratory mill used for milling, and it only builds up some general criteria, such as: the laboratory mill should be provided with four differently nicked barrels, a sieve with appropriate hole sizes, and also with the separated collections of the pilot flour and the bran. Our study was started at this point and the answers for the following questions were aimed to be found: do the flour patterns studied and produced with different sieving techniques,
widely used in laboratory mills of the same wheat pattern show any alterations after the impact of the formula production as regards chemical constitutions. Various flours of the wheat pattern sieved with different particle sizes were studied in this experiment.
In producing this pattern we used FQC109 type of mill. There were 5 different corn sizes of 250-200; 200-160; 160-125; 125-100; <100 μms used in the partition of the fractions. The results this research confirm that the quality of wheat flour can be modified by different methods of pattern production. -
Stability analysis of different winter wheat genotypes in long-term experiment
135-141Views:116Nowadays, due to the climate change, it is becoming increasingly important in the occasionally extreme years that the yield and the quality
parameters of a given winter wheat variety should not fluctuate at all or only slightly under similar agrotechnical conditions as a result of the year effect. In four years (2005–2008) we studied the changes in the wet gluten content, gluten speading and protein content of five wheat genotypes at six fertilization levels.
In the control, it can be observed that the year had a significant effect on the wet gluten content, the protein content of the flour and gluten speading, therefore, a great fluctuation was detected in these qualities of the varieties in the four studied years. At the optimum fertilization levels (N120-150+PK), the varieties Sixtus, Saturus and Lupus showed a much lower fluctuation and more stable values were measured. The most stable variety in the control treatment was Mv Mazurka for all the three quality parameters, while at the optimum fertilization level (N120+PK), the most stable results were obtained for the variety Sixtus as an average of the four years.
When studying the results using Kang’s method for stability analysis, it can be stated that the most stable values of wet gluten content were obtained at the fertilization level of N120+PK under a variable year effect, the varieties gave also the best gluten content values at this level. The most stable protein content values of flour were obtained at the fertilization level of N60+PK. The results showed that the fluctuation of quality parameters as a result of the changing years differed between the different winter wheat varieties due to their differing genotypes, but this fluctuation could be reduced or minimized by a proper fertilization. -
Effect of the Cropping Year on the Quality of Winter Wheat
89-95Views:175We examined the formation of quality parameters of winter wheat in a small plot variety comparison experiment from four cropping years. Our aim was to estimate the year effect on several quality parameters of winter wheat.
We established in relation to the distribution of precipitation of the examined years that the years 1997 and 2000 were behind the thirty year average typical precipitation of this site both in the case of the whole vegetation period and the spring and summer. It was unfavourable for qualitative wheat production. 1998 and 1999 were good for cropping considering the amount and distribution of rainfall.
Examining the formation of quality parameters we found that the baking value was maximum in 1997, with a moderate amount of normal distributed rainfall for the examined varieties. The mid-late maturating varieties showed better baking value in drought years than in wet years. In the case of the wet gluten content, we established higher values after a rainier spring-summer period. There is a conspicuous difference between the falling number of extensive and intensive varieties and the year had significant effect on the formation of values. We established with correlation analysis that both the precipitation of vegetation period and the maturing rainfall had considerable effect on the value of falling number. Examining the effect of fertilization on the formation of wet gluten content as a quadratic equation, we found that precipitation may both increase and maximalize the value of this quality parameter.