Published After
Published Before

Search Results

  • The examination of the agronomy, the amount of yield, and the yield stability of winter wheat varieties

    Our research was carried out at University of Debrecen Centre for Agricultural Sciences Faculty of Agriculture Institution of Plant Sciences Látókép Research Institute through the breeding year of 2003/2004, 2004/2005 and 2005/2006 using cherrnozem soil. In our research we tested 14 chosen autumn wheat varieties during the three crop years.
    The different varieties showed very dissimilar ability of resistance against diseases through the three crop years. We could observe both susceptible and resistant varieties. Susceptible varieties got diseases even in favourable crop years. The observed winter wheat varieties showed higher susceptibility against helminthosporium (21.8%) and leaf rost (16.4%). Among the 14 varieties we experienced the least susceptibility in the case of ‘Gaspard’ and ‘GK Kalász’. The research showed that the disease of fusarium undoubtedly depends on the features of the crop year.
    In terms of stem solidity we experienced big differences. Among all the observed winter wheat varieties the mid-late ripening ‘Gaspard’ showed the best results in the average of the three years, only 5.3% was beaten down.
    The three ripening group of the winter wheat showed the following average yield in the average of three years: 7065 kg/hectare (early ripening varieties), 7261 kg/hectare (late ripening varieties), 6793 kg/hectare (mid-late ripening varieties). Among all the observed varieties the early ripening ‘Flori 2’ produced the biggest yield (7692 kg/hectare).
    During the three crop years we reached very different amounts of yield which means that weather conditions had a telling affect on yield. In 2004 we reached an excellent average yield in all the tree  breeding groups because of the favourable weather conditions. In 2005 we had a moderate amount of yield because of the unfavourable weather conditions of winter. The year of 2006 showed the smallest amount of yield which is due to the fact that the plant grew less thick than usually.
    There were significant differences among the observed varieties in the term of yield, which can be attributed to dissimilar biological basics.
    One of he most important questions is the yield stability of the varieties. We had extremely different results at this field. Speaking in general terms we can state that both weather conditions and genetical abilities have a determining effect on yield. In the case of winter wheat varieties the rate of yield fluctuation was quite big, moving in the interval of 33.7-70.3%. Among all the observed varieties ‘Gaspard’ showed the best yield stability (33.3%). 

  • Effect of weather conditions on the protein content and baking value of winter wheat flour

    We searched for connections between weather conditions (with its sub-parameters as precipitation and average temperature) and the yearly formation of two quality parameters (protein content and baking value) on three levels of mineral fertilization, based on the results of a variety comparison experiment on chernozem soil, to select those weather parameters and critical periods which have significant effects on the quality of winter wheat flour.
    We established that the protein content of winter wheat flour can be increased with increasing levels of mineral fertilizers. Protein content is lower and has higher deviation during non-fertilized conditions in different cropping years than on higher fertilization levels. Thus, it seems proved again that quality (as protein content) is mainly formed by the crop year, but can be improved with adequate agricultural engineering (with mineral fertilization in the present case). The higher sum of precipitation in May, and the lower average temperature after flowering, have the highest increasing effect on the protein content of flour of the examined parameters. Based on the results of the examined period, the rainier and warmer term than average before flowering and lower – average amount of precipitation and colder circumstances are favourable for higher baking values. The analysis with data of decades, proves the importance of the first half of May and the middle of June as especially important periods for quality formation. An increasing nutrient supply has different effects on the varieties; mineral fertilization increased the baking value of GK Öthalom winter wheat variety in almost every case, but the second level of fertilization decreased it in half of the examined years. Additionally, mineral fertilization played a role in the stabilization of the quality of highlighted varieties.

  • Examination of the impact of sowing technology models on the ear, constiuent and yield parameters of the yield formation elements of maize hybrids of different genotypes

    Production year 2012 has been characterised by climatic extremities. The weather of this year can be considered very contradictory in terms of maize production. The droughty conditions of the winter and spring months had a negative effect on both germination and starting vigour. The favourable weather of May-July created ideal conditions for intensive growth and generative processes; however the lack of precipitation in August and September had a damaging effect on the development of yield composing elements and grain saturation processes as well. Under such circumstances, the sowing date models caused significant differences in the yield and quality of the hybrids belonging to different growth periods. The growing period of the maize hybrids has been shortened as a result of the unfavourable climatic conditions.

    Based on the trial results, it is verifiable that short growing period hybrids can be securely sown in draughty years even with a later sowing date, however using a later sowing date in the case of longer growth period hybrids may result even in a yield loss of 2–3 t ha-1. In the case of early and average sowing dates, with given yearly conditions the hybrids of the observed FAO 370-390 hybrid group provided the best result (12.40 t ha-1, 10.99 t ha-1), while in the case of the third, late sowing date the yield dominance of the FAO 290-350 hybrid group is the most significant (10.08 t ha-1).

    The analysis of the yield composing elements found that the P9578 hybrid has the highest shelling ratio, while its cob is the shortest. The P9494 hybrid has a high yield and the highest thousand grain weight, while the DKC 4983 has the longest cob and its thousand grain weight is above 300 g.

    The results confirm the fact that DKC 4590 has the highest yield potential and starch content, while in terms of oil and protein content the Szegedi 386 and NK Octet hybrids are the most important.

  • Impact of fertilization on production capacity and reaction to fertilization in maize hybrids

    New varieties and fertilization have significantly increased yields of maize in recent decades. It has to be taken into account however that the interactions and the balanced combination of cropping factors (ecological, biological and agrotechnical) are the main factors which determine yields. Weather conditions were rather unfavourable during the last decade. Extreme weather conditions occurred due to global warming; 6 of 10 years were plagued by drought. Consequently yields increased from 10-20% to 30-50%. In view of varieties the situation is advantageous, maybe the supply of hybrids is too high, nevertheless those hybrids need to be selected which are particularly well adjusted to the ecological conditions. Many technologies can be applied which vary according to intensity, but the balanced combination of cropping factors should be secured on the basis of the hybrid’s intensity. Among agrotechnical factors the compensation of nutrients and technological conditions were inadequate. These days farmers only use nitrogenous fertilizers consequently they significantly decrease the easily available P and K content of the soil which in long term leads to the deterioration of the soil’s productivity. The technological background is therefore important, because sufficient yields can only be expected if agrotechnical operations are carried out in the right time and quality. 

  • The effect of climatic change on the rheological properties of winter wheat doughs

    In present paper we have examined the effect of climatic change on the extensigraph characteristics of wheat-flours. The baking quality
    of winter wheat is largely determined by cultivar, but it can be influenced by weather conditions during growing period. Flours were from 5
    cultivars grown at one location in three cropping years. We have found that the extensigraph properties of dough are affected by the weather
    conditions, nevertheless, different cultivars distinctly react to the increase of temperature and decrease of precipitation. In generally, the
    higher average day temperature and lower precipitation level is favourable to produce winter wheat flour with better quality

  • Impact of weather on the spring crops yield in Croatia with emphasis on climatic change and the 2014 growing season

    Main field crops in Croatia are maize, soybean, sunflower and sugar beet. By these crops are covered (status 2014) close to 50% (385 234 ha) of utilized arable land. Global warming, have often adverse influence on field crop yields. Aim of this study was testing precipitation and temperature regimes on spring crops yield in Croatia in 15-year period (1999–2013) and elaboration of the 2014 growing season with aspect of climatic change.

    Four growing seasons (2000, 2003, 2007 and 2012) were less favorable for maize because annual yield was bellow 5 t ha-1 (average 4.38 t ha-1), while in four more favorable years (2005, 2008, 2009 and 2010) annual yield was above 6.8 t ha-1 (average 7.32 t ha-1). Average precipitation and temperature for the April-September period in Osijek were 226 mm and 496 mm, 19.6 oC and 18.6 oC, for less and more favorable years, respectively. Yields of soybeans and sugar beet have mainly similar trend as maize yields in function of weather conditions, while sunflower is more susceptible to extremely moist growing seasons (for example, 2001 and 2005: 650 mm and 697 mm precipitation and very low yields in level 1.7 and 1.6 t ha-1, respectively). On the other side, under drought conditions of 2003, 2007 and 2012, yields of sunflower were above average in range from 2.5 to 2.7 t ha-1), while at same period yields of maize, soybean and sugar beet were drastically reduced.

    Average precipitation in the April-September period of 2014 for eight selected sites of Croatia was 756 mm or for 68% higher in comparison with the long-term average 1961–1990 with variation among the sites from 520 mm in Osijek to 910 mm in Varazdin. On the other side, average air-temperature in 2014 was 17.8 oC or for 0.7 oC higher with variations among the sites from 17.2 oC in Daruvar and Varazdin to 18.2 oC in Osijek and 18.3 oC in Gradiste. Under these favorable weather conditions, annual yields of maize (8.1 t ha-1), soybeans (2.8 t ha-1) , sunflower (2.9 t ha-1) and sugar beet 63.6 t ha-1) were considerable higher than usual.

  • Studies of plant density increase – on maize hybrids of various genotypes on chernozem soil

    The yield and crop safety of maize are influenced by numerous ecological, biological and agrotechnical factors. It is of special importance to study one of the agrotechnical elements, the plant density of maize hybrids, which is influenced by the growing area conditions and the selected hybrid.

    We have investigated the effects of three different plant numbers (50 thousand plants ha-1, 70 thousand plants ha-1 and 90 thousand plants ha-1) on the yield of 12 maize hybrids of different genotypes in Hajdúság, on calcareous chernozem soil, in the Látókép Research Farm of the University of Debrecen, Centre for Agricultural Sciences, in 2013. The experiment was set in four replications, besides commonly applied agrotechnical actions. In the experiment, 1 hybrid of very early (Sarolta), 9 of early (P 9578, DKC 4014, DKC 4025, P 9175, NK Lucius, Reseda, P 37N01, DKC 4490, P 9494) and 2 of medium (Kenéz, SY Afinity) maturation were used.

    With the increase of the plant number, the number of individuals per unit area increases. According to our experimental results, we have concluded that with the increase of the plant number, the yield increased in the average of the hybrids. In the average of the hybrids, in the case of 50 thousand plants ha-1, the yield was 13 130 kg ha-1, in the case of 70 thousand plants ha-1, it was 13 824 kg ha-1, while in the case of 90 thousand plants ha-1, the yield became 13 877 kg ha-1.

    In addition to plant density increase, it is necessary to determine the optimal plant number that is the most favourable for the certain hybrid under the given conditions. To fulfil this aim, we have determined the optimal plant number corresponding to the maximum yield of the given hybrid, within the given plant number range. The optimal and applied plant numbers differ, since the optimal one could only be applied under ideal conditions. Since the agrotechnical actions cannot always be carried out in appropriate quality and one has to adapt to the weather conditions, thus we have determined a plant number range in the case of each hybrid. The hybrids were classified into categories of producible in narrow and broad plant number range.

  • Complex evaluation of agrotechnical factors in rape seed

    A polifactorial field trial with rape was carried out in the crop-years of 2007/2008 and 2008/2009 at the Látókép Research Centre of University of Debrecen, 15 km away from Debrecen. The soil type of the research area was a calcaric chernozem, with a levelled and homogeneous surface. Our investigations on the dynamics of lodging proved that rape can easily be lodged under unfavourable weather conditions, which results in a significant crop failure: In crop-year 2009 yields were 1.0-1.5 t ha-1 higher than in 2008, when the weather conditions were more unfavourable. In both crop-years the influence of sowing time on the crop yield of rape was examined in three soil cultivation systems, with ploughing, loosening or disking. Different sowing time influenced the yield of rape in both crop-years significantly. In the crop-year of 2007/2008 – due to mild winter – we got the highest yield in the first sowing time (at the end of August) with loosening (3930 kg ha-1) and disking (3727 kg ha-1), while in case of ploughing we experienced the highest yield (3770 kg ha-1) in the second sowing time. There were no significant differences between the first and second sowing time (the end of August and the beginning of September), and in the third sowing time (end of September) also a moderate crop failure (-6.7%) cold be obtained, due to the favourable weather in winter and the water supply of the crop-year 2007/2008. In 2008/2009 all the three cultivation systems showed the best yield-results in the second sowing time (ploughing: 4886 kg ha-1, loosening: 5186 kg ha-1, disking: 5090 kg ha-1), and the first sowing time hardly differed from this (-4.1%), while the late September sowing time resulted in a significant crop failure of -11.1%.

  • Evaluation of long term experiments from a new aspect

    During our work, we developed a new, simple method to show the effects of fertilization on yield, which can both be applied over the long term as well as in series of independent experiments.
    During the testing of this method, at the experimental farm of the Debrecen University Center for Agricultural Sciences at Látókép on a chernozem soil with lime deposits, we examined the fertilizer reaction of maize hybrids between 1989 and 1994. The treatments were: winter tillage, plant density of 70-80 thousand, unfertilized, N 120, N 240 kg/ha fertilized treatments, long term experiments using Dekalb 524 and Volga SC hybrids in long term experiments.
    Four parameters are shown in the model. In the examined period TRmax represents the greatest yield in the fertilized treatments, NT the yield in unfertilized treatment, k the „efficiency of fertilizer” to NT and b the depression-coefficient, where the expected value is zero. The expected grain yield of the fertilized treatments (Y), in the function of the unfertilized grain yield (x) is the following:

    The parameters were determined using the Monte Carlo method, in the optimizing process the sum of deviation square was minimized. The correct conformation of the functions was determined by the greatness of the R-value and the standard error. We found that during six years of testing, the tendency of fertilization efficiency was similar in the case of both hybrids. There was an unfavorable weather interval and, in these years, the yields were low, fertilization did not have an effect and moreover, in extremely bad conditions resulted in an obvious yield decrease. With the  improvement of conditions, which in the case of our country means an increase in precipitation, the efficiency of fertilization increases and reaches its peak at 13-14 t/ha. At this point, the yield increasing effect of fertilization is 4-4,5 t/ha. If the yield of the unfertilized treatments increases from 8-9 t/ha, then the efficiency of the applied fertilizer decreases.
    Most likely, the k and b parameters depend on the soil of the experimental location (nutrient and water management) and on the amount of  pplied fertilizer and the characteristics of the  hybrid. With the increase of fertilizer dosage the k-parameter also increases. The greater value though does not obviously mean a more favorable situation. It is true that in medium and good years this means great fertilizer efficiency, but in low or extreme precipitation conditions it also means greater risk. With the increase of the k-parameter, the yield deviation also increases which, from a cultivation point of view, is quite unfavorable. If the value of the b-parameter is other than, zero then the effect is clearly unfavorable, because with the increase of this value, the yield decrease is also greater. The fertilizer reaction of the two examined hybrids can be well characterized by these two hybrids.
    Examining the six years, our created model estimated the effect of fertilization on the yield accurately and with a high degree of safety. Both in highly unfavorable and extremely good years, it gave an exact estimate. In our opinion, it can be used well to evaluate the effects of fertilization on yield in the future.

  • How have thermal conditions changed in different phenological stages of apple (Malus domestica) in Northeastern Hungary?

    In temperate climates, most fruit trees need cold weather, low temperatures in winter, and a certain amount of heat during the growing season until harvest. One of the most apparent effects of climate change is the elevated temperature in all seasons of the year. In our study, the changes in thermal conditions have been calculated in Hungary's most significant growing region of apples using the Chill Unit for winters and the Growing Degree Days for summers. The meteorological data were obtained from the gridded dataset of the Hungarian Meteorological Service on a 10 km × 10 km grid, so the whole studied area is well-covered over the last 50 years. The results show that the trees are more exposed to early budding than a few decades ago. Furthermore, the accumulated heat amount in summers has increased drastically, which may increase the heat stress and lead to higher yield losses.

  • Production of corn in Serbia in the light of climate change

    This paper presents the basic elements of maize production technology in Serbia. For their good knowledge, it is necessary to be familiar with the basic biological requirements of the species, phenology and its particular requirements for water, heat, soil conditions and mineral nutrition. A special emphasis in this paper is given to recent research by the author regarding the correction of production technology (selection of hybrids, time and density of sowing, etc.) from the aspect of knowing the weather conditions of the year to the moment of sowing and the amount and position of available nitrogen in the soil profile during the spring before sowing. In the light of predicted climate change conditions for the Republic of Serbia, the authors of this paper have proposed and appropriated adaptation measures. The general conclusion is that there are no general recipes for the correct production technology of this plant species, but should be adapted to each specific year, field and hybrid.

  • Daily behaviour of Hungarian Grey Cattle under range grazing conditions

    Cattle behaviour on rangeland depends on external factors, such as grass allowance and quality, temperature, net solar radiation, distance from water-source, wind speed and direction, air pressure changes and the applied breeding technology. Our research is based on previous empirical observations and modern methods to analyze the behaviour of the Hungarian Grey Cattle. Today it is crucial to use cost-effective solutions in modern beef cattle farming therefore we introduce a cost-efficient method to study and follow cattle herds. We are studying relation between traveled daily distance and air pressure. The various weather fronts influence behavioural characteristics and traveled daily distance. According to our hypothesis, the pressure-change and the wind direction has significant effect on cattle activity on pasture. As the different air masses alter the barometric conditions and unbalance the neuroendocrine system, indirectly cause relaxed or agitated behaviour

  • The effect of water-stress on the mineral nutrition of fruit plantations

    Besides agro-techniques the climatic conditions play an important role in agricultural production. Weather extremes are
    significant hazards to many horticultural regions all over the word. It has a profound influence on the growth, development and yields of a
    crop, incidence of pests and diseases, water needs and fertilizer requirements in terms of differences in nutrient mobilization due to water
    stresses. Nowadays, the weather extremes cause more and more problems and significant hazards to many horticultural regions in Hungary.
    The aim of this study is to explore the problems of nutrient uptake followed from climatic anomalies and response it. In this study
    we focus on water supply problems (water-stress).
    Reviewing the effects and nutrient disorders caused by climatic anomalies, the following statements can be taken:
    · Nutrient demand of trees can be supplied only under even worse conditions.
    · The most effective weapon against damage of climatic anomalies is preventative action.
    · Proper choice of cultivars, species and cultivation should provide further possibilities to avoid and moderate the effects of
    climatic anomalies.
    · Fruit growing technologies especially nutrition should be corrected and adjusted to the climatic events as modifier factors.
    · The role of foliar spraying, mulching and fertigation/irrigation is increasing continuously.
    · Urgent task of the near future is to correct and adjust the tested technologies of fruit growing according to these climatic events as
    modifier factors.
    Optimal nutrient supply of trees decreases the sensitivity for unexpected climatic events. To solve these problems supplementary, foliar
    fertilization is recommended, which adjusted to phonological phases of trees. Moreover, mulching is regarded as an excellent water saving

  • Examination of two artichoke cultivars under single year Hungarian climate conditions

    Based on the results of a previous experiment, we concluded that by choosing a suitable cultivar, it is possible to produce artichoke in a one-year cultivation system in Hungarian weather circumstances. The objective of the present experiment was to investigate the performance of two Californian artichoke cultivars (Green Globe, Imperial Star) under the local conditions. Experiments were conducted in 2002 and 2003, by using four
    different sowing and two different planting dates (03.01. and 03.20. – planting 05.07.; 04.24. and 05.06. – planting 06.12.). For both cultivars, 100% of the plants initiated buds. In most of the cases, Imperial Star produced higher total and marketable yields than Green Globe did, while it formed bigger and more uniform buds. Our opinion is that the main reason for this result was that Imperial Star tolerated the dry and warm Hungarian summer much better. Irrespective of the variety by earlier sowing dates higher total yield was achieved. Based on our results, we found that under Hungarian circumstances, both cultivars could produce acceptable total yields. However, the weather circumstances of the given year influenced bud quality, and thus marketable yield, to a great extent. 

  • Effect and interaction of crop management factors and crop year on the yield of maize (Zea mays L.)

    The aim of this study was to determine the combination of treatment levels of crop management factors which can optimize and sustain maize yield under varying climatic conditions. The effect of winter wheat forecrop, three tillage systems (Mouldboard-MT, Strip-ST, Ripper-RT), two planting densities (60,000 & 80,000 plants ha-1), three fertilizer levels (N0-control, N80, N160 kg ha-1) with four replications in irrigated and non-irrigated treatments were evaluated over a five year period, 2015–2019. The obtained results revealed that growing season rainfall positively correlated with yield, whereas, temperature negatively correlated with yield. Impact of adverse weather on yield was less severe in biculture, irrigated plots, at lower planting density (60,000), lower fertilizer rate (N80) and in RT and ST, compared to MT. In years with favorable rainfall, yields of MT and RT were significantly (P<0.05) higher than ST. However, in a less favorable year, such as 2015, with 299 mm growing season rainfall and the lowest July rainfall (59% below mean) there was no significant difference (P>0.05) in yield among the three tillage treatments. Higher planting density (80,000), and fertilization rate (N160) in tandem with MT are treatments combination conducive for high yield under favorable climatic conditions, whereas, in years with low rainfall and high temperatures, RT and ST offer alternative to MT for optimum yield with 60,000 plants ha-1 and N80 treatment level. Crop year effect accounted for 20.7% of yield variance, fertilization 35.8%, forecrop 12.8%, plant density 3.4%, tillage 1.2% and irrigation <1%. It is conclusive that with proper selection of the appropriate levels of agrotechnological inputs the adverse effect of weather on yield can be mitigated.

  • Effect of the dry and rainy weather on the Idared and Golden Reinders apple varieties fruit quality

    Weather conditions have an important role in fruit production. In the last few decades, this role is increased and basically determines the
    fruit quality and quantity. Despite of this statement, there is but very few information about impacts caused by weather anomalies in
    Hungarian orchards. Regarding this, the relation between the external, and internal values of the Idared and Golden Reinders apple varieties,
    the changing of the temperature and precipitation in a dry year (2009) as well as in a rainy year (2010) were investigated. The examined
    apple varieties are grown at the same training system (rootstock, spacing, training, pruning system). The average weight, average diameter,
    acid content and soluble solids were higher in 2009 than in 2010, although the precipitation was higher in 2010. Due to the many rainy days
    the intensity of sunshine and the number of sunny days were less. To produce better quality it is very important the amount of the sunshine
    and heat, the optimal temperature and the precipitation rate.

  • The effect of plant density on maize yield in average and extremely dry years

    The yield safety of maize has not been satisfactory in Hungary for decades. Yield is influenced by the combination of several factors.
    In recent years, the frequency of dry years increased and fertilization decreased. These factors call for a rational determination of the plant density.
    I studied the relationship between plant density and yield in 2003-2004 and 2007 on meadow soil. 
    In 2003, the weather was dry. In the vegetation period, the amount of precipitation was 78.5 mm lower and the temperature was 0.97 °C higher than the average of 30 years, the number of hot days was 47-60 (days with a temperature higher than 30 °C). However, we obtained favourable results under experimental conditions in 2003 after wheat as a forecrop using the fertilizer Kemira Power. 
    The weather in 2004 was favourable. In the vegetation period, the amount of precipitation was 93.2 mm higher than the average of 30 years.  Although, the distribution of the precipitation could have been more favourable. The yield of the hybrids ranged between 8.87-10.42 t/ha. Among the studied seven hybrids, the early hybrids gave the highest yield at the highest plant density of 90 thousand plants/ha (PR38Y09, PR38A67, PR37D25, PR37M34). However, FAO 400-500 hybrids gave favourable results also at the low plant density of 45 thousand plants/ha (8-9 t/ha). At this plant density, the aeration of the plant stock was better and the hybrids were prone to bringing several cobs. Yield stagnated with increasing plant density (60 thousand plants/ha), then at 75-90 thousand plants per ha, the yield started to increase again.
    In 2004 the yield of hybrids was considerably higher than in the previous year. In contrast to yields of 8.87-10.42 t/ha in 2003, yields in 2004 were around 9-12 t/ha.
    The yield of the hybrid XO 902 P is above 12 t/ha already at a plant density of 45 thousand plants/ha. It gives maximum yield at the plant density of 90 thousand plants/ha.
    The hybrid PR38P92 showed a good response to changing plant density, but its yield was only 9 t/ha at the low plant density value.
    In a favourable year, the yield of the hybrids PR38B85, PR37W05, PR37D25, PR37K85 at a plant density of 45 thousand plants/ha 11 t/ha, while at the higher plant density of 90 thousand plants/ha, it ranges around 13-15 t/ha.

    Hybrids PR36K20, PR35Y54, PR34H31 have a good individual yield and they are prone to bringing several cobs in favourable years at a low plant density. Their maximum yield at the plant density of 90 thousand plants/ha is almost 16 t/ha.
    In 2007, the weather was similar to that of the extremely dry year of 2003. The amount of precipitation in the vegetation period was 41.9 mm lower than the average of 30 years and its distribution was not favourable either.
    In the optimum NPK fertilizer treatment at an optimum plant density, the yield of hybrids ranged between 9.32-10.73 t/ha. The highest yields of 10.22-10.73 t/ha were measured for hybrids PR38A79 (FAO 300) and PR35F73 at a relatively low plant density of 60 thousand plants/ha.
    In the average of the hybrids, the optimum NPK dosage was N 131, P2O5 82, K2O 93 kg/ha active ingredient.

  • The Effect of Sowing Time and Plant Density on the Yield of MaizeHybrids

    The crop technology of maize has two important elements, sowing time and plant density. In 2003 and 2004 we studied the effect of these two factors on the growth and production of maize in an experiment carried out near Hajdúböszörmény.
    The soil of the experimental plots was meadow soil.
    Weather in both years was differed greatly. 2003 was drought. Neither the distribution nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
    In 2004, we could talk about a favorable and rainy season. The distribution and quantity of precipitation was suitable between April and September. The average temperature was also suitable for maize.
    Results of the sowing time experiment:
    In 2003, we tested seven hybrids at four sowing times. Hybrids in the early maturity group gave the highest yield at the later sowing time, while the hybrids of the long maturity group gave it at the earlier planting time. The yield of PR34B97, PR36N70, PR36M53 hybrids was the best at every planting time. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
    In 2004, we examined the yield and seed moisture content of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing time. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time than at the later.
    The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.
    Results of the plant density experiment:
    We tested the reaction of hybrids at four plant densities (45,000, 60,000, 75,000 and 90,000 stock/ha) every two years. In 2003, the tested seven hybrids reached the highest yield at the 90,000 stock/ha in the face of a droughty year. The effect of forecrop and favorable nutrients caused these results. In the rainy 2004 year, the yield grew linear with the growing plant density. The yield of the best hybrids were 14-15 t/ha at the 90,000 stock/ha.
    Such a high plant density (90,000 stock/ha) couldn’t adaptable in farm conditions in rainy season. It is practical to determine the interval of plant density besides the optimum plant density of hybrids which gave correct yield. The farmers have to use the low value of this interval due to the frequent of the droughty years.

  • The effect of sowing date and plant density on the yield of maize (Zea mays L.) under different weather conditions

    Maize has high productivity and produces huge vegetative and generative phytomass, but this crop is very sensitive to agroecological (mainly to climatic, partly to pedological conditions) and agrotechnical circumstances. In Hungary, maize is grown on 1.1–1.2 million hectares, the national average yields vary between 4–7 t ha-1 depending on the year and the intensity of production technology. The longterm experiment was set up in 2015–2016 on chernozem soil in the Hajdúság (eastern Hungary). The maize research was set up on chernozem soil at the Látókép MÉK (Faculty of Agricultural and Food Sciences and Environmental Management) research area of the University of Debrecen. We examined the following commonly used hybrids of Hungary: SY ARIOSO (FAO 300), P9074 (FAO 310), P9486 (FAO 360), SY Octavius (FAO 400), GK Kenéz (FAO 410), DKC 4943 (FAO 410). The experiment was set up in three different plant densities. These were 60, 76, 90 thousand plant ha-1. The experiment was set up with three different sowing dates, early, average and late sowing. The yield was measured using a special plot harvester (Sampo Rosenlew 2010), measuring the weight of the harvested plot and also taking a sample from it. As a next step, we calculated the yield (t ha-1) of each plot at 14% of moisture content to compare them to each other. We evaluated the obtained data using Microsoft Excel 2015.

  • Changes in the Diaporthe helianthi Infection of Sunflower Hybrids Between 1998 and 2002

    Plant protection, and especially the efficiency of protection against mycosis, is a very important production technological element concerning sunflower. The efficiency of production can be increased on the basis of a thorough pathological survey and its results carried out in a wide variety of hybrids, as the features of hybrids, the reactions of genetic bases to pathogens can be found out under domestic conditions.
    The tests were carried out at variety-test lots of OMMI for hybrids used for food or oil and other sunflower varieties admitted by the state at the Experimental Site DTTI Látókép, Centre of Agricultural Sciences, University of Debrecen between 1998 and 2002. The number of the tested hybrids was 49 in 1998, 45 in 1999, 49 in 2000, 55 in 2001, and 44 in 2002.
    Due to the infection source of high amounts remained from 1997 and the favourable weather conditions for the pathogens, an infection of high degree was experienced in the tested stands. The lowest infection index in the hybrids with a very short vegetative period was experienced with Beni hybrids. Comparing to the average of the hybridgroup with short vegetative period, a low infection index characterised the Baleno, Trident, IBH-166, Hysun 321, Resia, Alexandra, Cergold and Pixel hybrids. In 1999, among hybrids with medium vegetative period, Zoltán, Zsuzsa and Util hybrids could be highlighted because of their low infection index. In 1998, among confentionary hybrids, Marica-2 hybrid had the most favourable index values (2,55).
    During our trials, the experienced infection dynamics were compared in the event of hybrids with higher and lower susceptibility under different sowing technological elements. The results call for the fact that when a hybrid with higher susceptibility is produced, production technological elements, such as the time of sowing, influence considerably the damage caused by the pathogen, therefore it must not be ignored when its determination takes place. In the event of hybrids with lower susceptibility the change of the tested production technological elements within the biological optimum does not lead to the increased risk of the damage caused by Diaporthe helianthi.

  • Nutrient deficiency and effects of various nutrition technologies on crop health

    The impacts of climate change on crop production are increasingly noticeable. Extreme weather conditions – such as devastating droughts, which occur more often – have serious effects on crop conditions, thus damaging their defence ability against pathogens and pests. Therefore, in order to achieve high-quality and high yielding crops, it is urgent to elaborate new technologies that improve general condition of crops and prevent development of nutrient diseases. Those crops which suffer from the lack of certain nutrients are more sensitive and their tolerance against diseases are decreased. Nitrogen – as the most influencing macronutrient in yield – is also essential in maintaining crop health. Nevertheless, due to the complicated processes in soil (such as leaching, denitrification), the utilization of nitrogen is not nearly complete, therefore nitrogen stabilizers may be needed to maximize this factor. The use of these stabilizers can be promising where plants with high nitrogen content are grown, although further experiments are needed in which impacts of nitrogen stabilizers on crop protection aspects are examined as well, since there is a close correlation between exaggerated nitrogen fertilizing and sensitivity to pests. During my research I am going to examine the combined effect of foliar fertilizer and nitrogen stabilizer on crop health. Furthermore, my goal is to find clear correlation between pathogens and the different technological variants of nutrition.

  • The importance of millet production in regional production, with special emphasis on climate change
    Regional production is a traditional production structure developed adjusting to the geographical, climatic, biological and soil conditions in given production regions, a certain territorial specification of agricultural production, and a type of farming that best fits the natural conditions and takes the biological needs of plant and animal species into account as fully as possible. The most probable element of risk in plant production is the changeable, extreme weather. That is the reason why the specific characteristics of the place of production and the characteristics of regional production should be considered to a greater extent. The establishment of the range of varieties appropriate for the place of production is the key issue in regional production. One of our historically grown cereal plants that perfectly fits regional production is millet. Due to its short growing season, favourable reproduction ratio and the fact that it is relatively undemanding, it used to be grown in larger quantities in the middle ages. Its good nutritional values made it an important food item, but over time, as a result of industrialisation and technological progress; it has been eclipsed by other cereal crops. In our country it is mainly used to cook porridge, but it is also used in the form of flour and as a base material in the spirit drinks sector. In the recent decades, millet has been applied only in a small area, mostly as a secondary crop in areas that dried out from drainage water in late spring, or as a replacement of extinct sowings due to its late sowing time. Water will be the most significant factor for the future of agriculture, especially considering climate change.
    My examinations took place in the area of the Institutes for Agricultural Research and Educational Farm of University of Debrecen, in the Research Institute of Nyíregyháza, in a small-plot experiment with four replications in 2016.
  • The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids

    In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.

    Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.

    The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.

    In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.

    The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.

    However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.

    As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.

  • Testing disease resistance in autumn wheat genotypes by means of field experiments

    According to our scientific results we can state that we have to use integrated pesticides management in crop protection against the diseases of winter wheat. One of the most important elements of IPM is to select a genotype characterised by good resistance to diseases (and by high yield ability and excellent baking quality). It is especially important that the wheat variety have tolerance against not only to one or two leaf and spike (grain) diseases, but „complex” tolerance. It is not necessary to give up the growing of a variety which has susceptibility to different diseases because we can protect it using appropriate chemical management. In the intensive growing stage of wheat (BBCH 32-37) we can use a noncompulsary fungicide-treatment (depending on e. g. the infection, ecological conditions) and, at the beginning of the flowering stage
    (BBCH 59-65), we have to use a compulsary fungicide-treatment (in spite of e. g. special weather conditions, resistance genotype)to ensure high yield and good quality.

  • Effects of Site on Winter Wheat Quality 2002/2003

    The demand of modern societies for high food quality is evident. Thus, it is important for agriculture to produce row materials that are valuable for nutrition and have favourable characteristics for food processing. For this we need a knowledge about the factors which determine the quality of products. One of the main features of plant production is the “immobility”. This way the characteristics of the field influence the quality of the product, like example winter wheat, which is the main cereal in Hungary and Europe.
    The Concordia Co. has charged the Central Laboratory of Debrecen University, Agricultural Centre with laboratory testing of the 2002/2003 winter wheat crop. The samples consist of thirteen winter wheat varieties from six different sites under the same cultivating conditions. Therefore, the important wheat quality factors were analysed solely against site conditions with the use of Győri’s “Z” index, which contains these parameters.
    Soils were tested first. In this experiment excepting the negligible differences between the sites, there were no linear relations found between quality factors, productivity and soil features. The case is the same with the relation between precipitation, temperature and quality parameters. However, it must be noted that additional soil analyses are required to interpret the extreme results obtained from Karcag.
    The calculated Győri’s Z-index shows relative stability concerning certain varieties, although considerable deviation can be found in varieties related to the sites. According to these results, it can bestated that winter wheat quality was not linearly influenced by soil and weather in the 2002/2003 vegetation period. As the same cultivation technology was used in the experiment, the index was determined by genetic features. It must be noted that these findings are relevant only to this experiment.