Search

Published After
Published Before

Search Results

  • The Effect of Sowing Time and Plant Density on the Yield of MaizeHybrids
    95-104
    Views:
    71

    The crop technology of maize has two important elements, sowing time and plant density. In 2003 and 2004 we studied the effect of these two factors on the growth and production of maize in an experiment carried out near Hajdúböszörmény.
    The soil of the experimental plots was meadow soil.
    Weather in both years was differed greatly. 2003 was drought. Neither the distribution nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
    In 2004, we could talk about a favorable and rainy season. The distribution and quantity of precipitation was suitable between April and September. The average temperature was also suitable for maize.
    Results of the sowing time experiment:
    In 2003, we tested seven hybrids at four sowing times. Hybrids in the early maturity group gave the highest yield at the later sowing time, while the hybrids of the long maturity group gave it at the earlier planting time. The yield of PR34B97, PR36N70, PR36M53 hybrids was the best at every planting time. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
    In 2004, we examined the yield and seed moisture content of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing time. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time than at the later.
    The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.
    Results of the plant density experiment:
    We tested the reaction of hybrids at four plant densities (45,000, 60,000, 75,000 and 90,000 stock/ha) every two years. In 2003, the tested seven hybrids reached the highest yield at the 90,000 stock/ha in the face of a droughty year. The effect of forecrop and favorable nutrients caused these results. In the rainy 2004 year, the yield grew linear with the growing plant density. The yield of the best hybrids were 14-15 t/ha at the 90,000 stock/ha.
    Such a high plant density (90,000 stock/ha) couldn’t adaptable in farm conditions in rainy season. It is practical to determine the interval of plant density besides the optimum plant density of hybrids which gave correct yield. The farmers have to use the low value of this interval due to the frequent of the droughty years.

  • The effect of sowing time on the yield and the variance of the seed moisture content a harvest of maize (Zea mays L.) hybrids
    39-49
    Views:
    90

    Sowing time is an important crop technology element of maize. We studied the effect of this factor on the growth and production of maize in an experiment carried out near Hajdúböszörmény, in 2003 and 2004, and near Debrecen, in 2005.
    The soils of the experiments were humic gley soil and chernozem. Weather in both years differed greatly. 2003 was drought. Neither the distribution, nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
    In 2004 and in 2005, there were favorable and rainy seasons. The distribution and quantity of precipitation were suitable between April and September. The average temperature was also suitable for maize.
    In 2003, we tested seven hybrids at four sowing times. Hybrids with a shorter vegetation period gave the highest yield at the later sowing time, while the hybrids with a longer vegetation period gave them at the earlier sowing time. The yield of PR34B97, PR36N70, PR36M53 hybrids were the best at every sowing times. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
    In 2004, we examined the yield and seed moisture contents of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing times. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year, due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time, than at the later.
    In 2005, we applied three sowing times. Unfortunately, the results of the third sowing time could not be analyzed, due to the low plant density. The yield of the six hybrids varied from 12 to 14 t/ha at the first sowing time. At the second sowing time, the yields fluctuated and each hybrid had the lowest yield, except the PR37D25 hybrid. At the latest sowing time, the yield of the PR34B97 hybrid was the lowest. However, this low yield was due to damage from the Western corn rootworm (Diabrotica virgifera) imago. The moisture content at harvest of the hybrids varied from 16 to 24% at the first sowing time. Yields at the second sowing time were higher. The low yield of the PR34B97 hybrid coupled with a higher seed moisture content. In addition, the maximum value of the LAI was more favourable at the first sowing time, and ranged between 5-5.5 m2/m2.
    The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.

  • The effect of season and fertilizer on the LAI, the photosynthesis and the yield of the maize hybrids with different genetic characteristics
    27-34
    Views:
    72

    The experiment was carried out in Debrecen, at the Experimental Station of the University of Debrecen Centre of Agricultural Sciences, Department of Crop Production and Applied Ecology. We tested 10 various hybrids with their own genetic characteristics for five different fertilizer doses, in addition to the parcels without fertilization. The three factors of production technology jointly determine the successfully of maize production, but in different measure. The yield and the stability of yield of maize can be increased with hybrid-specific technologies.
    In 2004-2005 experiment years the favorable results reached were due to the rainy season. There were significant difference between the productivity of maize hybrids. The N 40, P2O5 25, K2O 30 kg/ha treatment caused the highest increase of yield (3-5 t/ha) compared to the control (parcels without fertilization). The reaction of hybrids to the further fertilizer doses was different. The agro-ecological optimum of NPK fertilization was N 120, P 75, K 90 kg of the most hybrids.
    During the experiment, we tested the moisture loss of the five hybrids. The seed moisture content at harvest was higher than in previous years due to the rainy seasons. The seed moisture content of harvest of FAO 200-300 hybrids were about 20%. It changed between 21-24% in the case of hybrids with longer vegetation period (FAO 400), the seed moisture content of Mv Vilma (FAO 510) was 24.21-25.04% in the average of fertilizer treatments. There is an important difference between the moisture loss ability of hybrids which changed 0.2-0.6%/day. The moisture loss of hybrids changed depending on the fertilizer treatment; usually, it was more favorable in the optimal fertilizer dose (N120+PK).
    In the case of tested hybrids, we measured the highest LAI and photosynthetic activity at the optimal treatment, N 120, P2O5 75, K2O 90 kg/ha in the respect of efficiency and environmental protection, and the yield was high also for this treatment. There are significant difference between the LAI, the photosynthetic activity and the yield of hybrids, and these values could change depending on the treatment of fertilization.

  • Correlation between sowing time of maize hybrids, yield and seed moisture content at harvest on chernozem soil
    32-41
    Views:
    104

    In this paper, we analysed the results of maize sowing time experiments conducted by the Department of Crop Sciences and Applied Ecology of the University of Debrecen Agricultural Sciences Centre, during the period from 1997-1999. We made the experiments at the experimental garden of DE ATC, on a chernozem soil with lime deposits.
    In 1997, we examined five hybrids, in 1998 six hybrids, and in 1999 three hybrids, with three sowing times. Sowing times were early (10. Apr. and 08. Apr.), optimal (25. Apr. and 28. Apr.) and late (15. May and 17. May). 
    We examined the following standards: yield, seed moisture content at harvest, thousand kernel mass, duration of flowering, emergence time and profitability.
    In 1977, the emergence times, in order of sowing, were: 24, 12 and 9 days. Yields of the sowing times were the following, in mean, for the five hybrids: in the early sowing time (10. Apr.) 11,81 t/ha, in the optimal sowing time (25. Apr.) 11,67 t/ha, and in the late sowing time (15. May) 12,9 t/ha. The seed moisture content of the five hybrids at harvest was 8% less in early sowing time, than in the late sowing time. The thousand kernel mass was the biggest in late sowing time, but we could not prove any significant connection attributable to the effect of sowing time. We examined
    profitability, too. Of the five hybrids, four attained the greatest profit with the early sowing time in 1997.
    In 1998, the emergence times, in the order of sowing, were: 21, 10 and 11 days. Yields of the sowing times were the following, in mean, for the six hybrids: 08. Apr. 10,34 t/ha, 25. Apr. 11,02 t/ha, 15. May 11,52 t/ha. There were no significant differences between yields in 1998. The seed moisture content of the six hybrids at harvest was 7% less for the early sowing time, than for the late sowing time. In 1998, the profits were greatest for the
    early and traditional sowing times.
    In 1999, the numbers of days from sowing to emergence were 18, 9 and 9 days, in the order of sowing times. Yields of the sowing times were the following, in mean, for the three hybrids: 13,25  t/ha, 12,51 t/ha and 12,34 t/ha, in the order of sowing times. The seed moisture content of maizes at harvest was 6% less with an early sowing time in the mean of all hybrids. In 1999, hybrid maizes gave big profits with early sowing times.
    Summing up the results of the three years, we can conclude that we get a significant yield increase and reduced seed moisture content at harvest if we apply the early sowing time, which can considerably increase the efficiency of maize cultivation. 

  • The effect of and interaction between the biological bases and the agrotechnical factors on maize yield
    83-87
    Views:
    144
    The effect of and interaction between the biological bases and the agrotechnical factors on maize yield In our research, we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize. The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2; therefore, this experiment was half-industrial. We tested six hybrids with different genetic characteristics and growing seasons.
    We analysed the correlation between the nutrient supply and the yield of maize hybrids with a control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. The yield increasing effect of the fertilizer also depended on the number of plants per hectare to a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants ha-1.
    In 2015, the highest yield was produced by hybrid P9241 with N80+PK and 70 thousand plants per hectare. With the N160+PK fertilizer dosage, the same hybrid responded the best, followed by hybrids P9486 and DKC4717. Using the same fertilizer treatment, the 80 thousand plants per hectare population density resulted in decrease in the yield with most of the examined hybrids. In 2016, with the increase in the number of plants per hectare, even with non-fertilised treatment (control treatment), the yield could be increased in the case of each hybrid.
    Averaged over the different hybrids and fertilizer treatments, applying 80 thousand plants ha-1 instead of 60 thousand resulted in 1.0 ha-1 yield increase. In 2017, the number of plants had a slighter effect. With N160+PK treatment, in most cases no significant difference can be observed. The value of LSD5%: plant number: 0.20 t ha-1, hybrid: 0.28 t ha-1, interaction: 0.48 t ha-1. With N160+PK treatment, the hybrids produced yields between 10.07 and 12.45 t ha-1. When examining the three years in the average of the number of plants, with treatment without fertilisation, the average yield of hybrids reached 7.53 t ha-1. With N80+PK treatment, this value was 9.71 t ha-1 and with doubling the fertilizer dosage, this value increased to 10.42 t ha-1. No economic profit was gained as a result of applying double dosage of fertilizer; therefore, the N80+PK dosage can be considered ideal.
  • Determining elements of variety-specific maize production technology
    157-161
    Views:
    62

    Our aim was to work out such new maize fertilizer methods and models which can reduce the harmful effects of fertilization, can
    maintain the soil fertility and can moderate the yield fluctuation (nowadays 50-60 %).
    The soil of our experimental projects was meadow soil. The soil could be characterized by high clay content and pour phosphorus and
    medium potassium contents. In the last decade, out of ten years six years were dry and hot in our region. So the importance of crop-rotation
    is increasing and we have to strive for using the appropriate crop rotation.
    The yields of maize in monoculture crop rotation decreased by 1-3 t ha-1 in each dry year during the experiment (1983, 1990, 1992,
    1993, 1994, 1995, 1998, 2000, 2003, and 2007). The most favourable forecrop of maize was wheat, medium was the biculture crop rotation
    and the worst crop rotation was the monoculture.
    There is a strong correlation between the sowing time and the yield of maize hybrids, but this interactive effect can be modified by the
    amount and distribution of precipitation in the vegetation period. At the early sowing time, the grain moistures were 5-12 % lower compared
    to the late sowing time and 4-5 % lower compared to the optimum sowing treatment.
    There are great differences among the plant density of different maize hybrids. There are hybrids sensitive to higher plant density and
    there are hybrids with wide and narrow optimum plant densities.
    The agro-ecological optimum fertilizer dosage of hybrids with a longer season (FAO 400-500) was N 30-40 kg ha-1 higher in favourable
    years as compared to early hybrids.
    We can summarize our results by saying that we have to use hybrid-specific technologies in maize production. In the future, we have to
    increase the level of inputs and have to apply the best appropriate hybrids and with respect to the agroecologial conditions, we can better
    utilize the genetic yield potential.

  • Study on the weeds of maize in the infected field with Cirsium arvense (l.) scop.
    131-135
    Views:
    111

    The aim of our research was to establish the difference between the weed flora of maize hybrids sown in different times. Our field trial has been performed nearby Szombathely on a field of an agricultural farm, where two different hybrids were grown. The cold tolerant hybrid was sown at the end of March; the traditional hybrid was sown at the end of April. During the vegetation weed survey was conducted on 4–4 model parcels at two times in case of both hybrids. Cirsium arvense gave the largest weed cover in both hybrids. In cold tolerant hybrid gave 4.53%, in the traditional hybrid gave 56.63% weed cover. Considering the number of shoots per square meter C. arvense was also dominant with 64 plant m-2 density in early sown maize and 49.5 plant m-2 in traditional maize hybrid. At the time of the second weed survey the number of weeds increased significantly. The shoot number of C. arvense in cold tolerant hybrid was almost one and a half times more than at the first evaluation, while in case of the traditional hybrid it is nearly doubled. According to the weed density assessment there were differences between the two hybrids in the rate of G3 and T4 weeds. In early sown maize hybrid (MT Milo) this rate was 50–50% while in traditional hybrid was 90–10%. On 26th June the density of the weeds in the cold tolerant hybrid was two times higher than in the traditional one (Kamelias). Based on the experimental results it can be stated that the effective weed control in cold tolerant, early sowing maize hybrids is very important too.

  • The effect of plant density on maize yield in average and extremely dry years
    7-16
    Views:
    85

    The yield safety of maize has not been satisfactory in Hungary for decades. Yield is influenced by the combination of several factors.
    In recent years, the frequency of dry years increased and fertilization decreased. These factors call for a rational determination of the plant density.
    I studied the relationship between plant density and yield in 2003-2004 and 2007 on meadow soil. 
    In 2003, the weather was dry. In the vegetation period, the amount of precipitation was 78.5 mm lower and the temperature was 0.97 °C higher than the average of 30 years, the number of hot days was 47-60 (days with a temperature higher than 30 °C). However, we obtained favourable results under experimental conditions in 2003 after wheat as a forecrop using the fertilizer Kemira Power. 
    The weather in 2004 was favourable. In the vegetation period, the amount of precipitation was 93.2 mm higher than the average of 30 years.  Although, the distribution of the precipitation could have been more favourable. The yield of the hybrids ranged between 8.87-10.42 t/ha. Among the studied seven hybrids, the early hybrids gave the highest yield at the highest plant density of 90 thousand plants/ha (PR38Y09, PR38A67, PR37D25, PR37M34). However, FAO 400-500 hybrids gave favourable results also at the low plant density of 45 thousand plants/ha (8-9 t/ha). At this plant density, the aeration of the plant stock was better and the hybrids were prone to bringing several cobs. Yield stagnated with increasing plant density (60 thousand plants/ha), then at 75-90 thousand plants per ha, the yield started to increase again.
    In 2004 the yield of hybrids was considerably higher than in the previous year. In contrast to yields of 8.87-10.42 t/ha in 2003, yields in 2004 were around 9-12 t/ha.
    The yield of the hybrid XO 902 P is above 12 t/ha already at a plant density of 45 thousand plants/ha. It gives maximum yield at the plant density of 90 thousand plants/ha.
    The hybrid PR38P92 showed a good response to changing plant density, but its yield was only 9 t/ha at the low plant density value.
    In a favourable year, the yield of the hybrids PR38B85, PR37W05, PR37D25, PR37K85 at a plant density of 45 thousand plants/ha 11 t/ha, while at the higher plant density of 90 thousand plants/ha, it ranges around 13-15 t/ha.

    Hybrids PR36K20, PR35Y54, PR34H31 have a good individual yield and they are prone to bringing several cobs in favourable years at a low plant density. Their maximum yield at the plant density of 90 thousand plants/ha is almost 16 t/ha.
    In 2007, the weather was similar to that of the extremely dry year of 2003. The amount of precipitation in the vegetation period was 41.9 mm lower than the average of 30 years and its distribution was not favourable either.
    In the optimum NPK fertilizer treatment at an optimum plant density, the yield of hybrids ranged between 9.32-10.73 t/ha. The highest yields of 10.22-10.73 t/ha were measured for hybrids PR38A79 (FAO 300) and PR35F73 at a relatively low plant density of 60 thousand plants/ha.
    In the average of the hybrids, the optimum NPK dosage was N 131, P2O5 82, K2O 93 kg/ha active ingredient.

  • The effect of NPK fertilization and the number of plants on the yield of maize hybrids with different genetic base in half-industrial experiment
    103-108
    Views:
    178

    In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize.

    The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2, this it was a halfindustrial experiment. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. Yield increasing effect of the fertilizer also depended on the number of plants per hectare at a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants/ha.

    In Hajdúszoboszló, in 2015 the amount of rainfall from January to October was 340.3 mm, which was less than the average of 30 years by 105.5 mm. This year was not only draughty but it was also extremely hot, as the average temperature was higher by 1.7 °C than the average of 30 years. In the critical months of the growing season the distribution of precipitation was unfavourable for maize: in June the amount of rainfall was less by 31mm and in July by 42 mm than the average of many years.

    Unfavourable effects of the weather of year 2015 were reflected also by our experimental data. The yield of hybrids without fertilization changed between 5.28–7.13 t ha-1 depending on the number of plants.

    It can be associated also with the unfavourable crop year that the yield of the six tested hybrids is 6.33 t ha-1 in the average of the stand density of 60, 70 and 80 thousand plants per hectare without fertilization, while it is 7.14 t ha-1 with N80+PK fertilizer treatment. That increase in the yield is only 0.81 t ha-1, but it is significant. Due to the especially draughty weather the yield increasing effect of fertilizers was moderate. In the average of the hybrids and the number of plants, increasing the N80+PK treatment to N160+PK, the yield did not increase but decreased, which is explicable by the water scarcity in the period of flowering, fertilization and grain filling.

    The agroecological optimum of fertilization was N 80, P2O5 60 and K2O 70 kg ha-1. Due to the intense water scarcity, increased fertilization caused decrease in the yield. As for the number of plants, 70 000 plants ha-1 proved to be the optimum, and the further increase of the number of plants caused decrease in the yield.

  • The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
    143-147
    Views:
    156

    In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.

    Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.

    The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.

    In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.

    The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.

    However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.

    As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.

  • Correlation between the weather in 2017 and the productivity of maize
    89-93
    Views:
    152
    In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize. The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2; therefore, this experiment was half-industrial. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. The yield increasing effect of the fertilizer also depended on the number of plants per hectare to a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants ha-1.
    In Hajdúszoboszló in 2017, up to October, 445.8 mm of rain fell, which is in line with the average values of 30 years, and is only 45.7 mm less than those. In 2017, the effect of increasing the plant number was slighter. Averaged over the observed fertilizer treatments and hybrids, the yield was 9.10 t ha-1 with 60 thousand plants ha-1, 9.11 t ha-1 with 70 thousand plants ha-1 and 9.12 t ha-1 with 80 thousand plants ha-1. Without fertilization, in most cases, increasing the plant number from 60 thousand plants ha-1 to 70-80 thousand plants ha-1 does not increased the yield but decreased it. With N80+PK treatment the yield changed between 8.90 and 11.27 t ha-1. The effect of increasing the plant number was just slightly observable and did not show a clear tendency. The effect of changing the plant number, even with the highest dosage of fertilizers, could not be detected adequately. In contrast with the plant number, the effect of the different fertilizer treatments was expressly traceable. Compared to the control treatment (treatment without fertilization), with N80+PK fertilizer dosage with 60 thousand plants ha-1 the yield increased by 3.36–4.99 t ha-1. The smallest demonstrable proof, i.e. the LSD5% was 0.22 t ha-1, which means that fertilization, in each case, significantly increased the yield. When analysing the effect of fertilization in the average of the hybrids and the different plant numbers, a yield of 5.61 t ha-1 could be detected, which value was 10.12 t ha-1 with N80+PK treatment and 11.61 t ha-1 with N160+PK treatment. Thus, it can be calculated that compared to the treatment without fertilization, the N80+PK treatment increased the yield by 4.51 t ha-1, while compared to the N80+PK treatment, the N160+PK treatment increased the yield by 1.49 t ha-1. In addition to agrotechnical factors, in maize production, the impact of the crop year is specifically of high importance.
    The average yield of hybrids (in the average of the different fertilizer treatments) was 6.81 t ha-1 in 2015, 11.86 t ha-1 in 2016 and 9.11 t ha-1 in 2017. When comparing the yield results against the precipitation data, it is clearly visible that the amount of rain fell in the January– October period is directly proportional to the average yield of maize. The effect of the crop year can be defined in a 5.05 t ha-1 difference in the yield.
  • Development of maize production technology that increase the efficiency of bioethanol production
    17-26
    Views:
    82

    Maize is one of the most important crops worldwide and also in Hungary, it can be utilized for multiple purposes: as a feedingstuff, for human nutrition and for industrial processing. In the last decades, the per ha yield of maize varied greatly in Hungary, between 2004 and 2006, it was 6.82-7.56 t/ha, while in 2007, it was only 3.6 t/ha. Resulting from this, the price of maize became 2-2.5 times higher. The high price hinders bioethanol production. The largest per ton amount of bioethanol, 387 l, can be produced from maize.
    In addition to its classical utilization as feed and food, the industrial use (especially for bioethanol production) of maize is increasin.
    For industrial production, a new production technology is needed. I tested and selected hybrids appropriate for this purpose and set up fertilization and plant density experiments. The experiment were set up on chernozem soil in 2007.
    The applied fertilization treatment was N 120, P2O5 80 uniformly, and five different dosages of potassium: K2O 0, K2O 100 (KCl), K2O 100 (Kornkáli), K2O 200 (KCl), K2O 200 (Kornkáli) kg/ha active ingredient. The applied plant densities were 40, 50, 60, 70, 80, 90 thousand plants/ha.
    The yield of maize hybrids in the fertilization experiment ranged between 10.53 – 14.62 t/ha. Both regarding the form and dosage, 100 kg/ha Kornkáli proved to be the best potassium treatment. Regarding the inner content parameters, the highest starch content in the average of treatments was obtained for the hybrid PR36K67: 73.57%, and its yield was also the highest, so this hybrid proved to be the most suitable for bioethanol production. The highest protein content was observed for the hybrids KWS 353 (12.13%), which can be favourable for feeding purposes.
    Most of the hybrids gave the highest yield at 80 thousand plants/ha plant density, however, hybrids PR36K67 and Mv Tarján achieved the highest yield at 90 thousand plants/ha.
    In bioethanol production, the selection of a high-yielding hybrid with high starch content, a slight reduction of N, increase of potassium, the application of the highest plant densities of the optimum interval, harvest at full maturity (when starch content is the highest compared to protein content) are of great importance. 

  • Utilization of the field experiment results of University of Debrecen in the development of maize-based bio-ethanol production
    55-57
    Views:
    131

    Maize is currently the single raw material of bio-ethanol production in Hungary. The aim of our examinations is the observation of yield and
    nutritional characteristics of commercial maize hybrids in Hungary from the aspect of efficient bio-ethanol production. We set up a 
    randomized block field trial. We determined the starch content and starch yield (t ha-1) of the 51 maize hybrids involved in the field trial.
    In laboratory conditions, we examined the amylose and amylopectin ratio and the amount of resistant starch of the selected 20 maize hybrids.
    According to our results, there is a significant difference between the starch yield the amylose component of the starch content and resistant starch of the examined maize hybrids. Our studies reveal that maize as a raw material must be selected based on the cultivation objectives. If the objective is bio-ethanol production, detailed knowledge of starch content is necessary. There is a significant difference among commercial maize hybrids in Hungary in terms of characteristics determining the producible amount of bio-ethanol.

  • Comparative analysis on the fertiliser responses of Martonvásár maize hybrids in long-term experiments
    111-117
    Views:
    68

    The results of experiments carried out in the Agricultural Research Institute of the Hungarian Academy of Sciences clearly show that in the case of hybrids grown in a monoculture greater fertiliser responses can be achieved with increasing rates of N fertiliser than in crop rotations. In the monoculture experiment the parameters investigated reached their maximum values at a rate of 240 kg/ha N fertiliser, with the exception of 1000-kernel mass and starch content. In both cases the starch content was highest in the untreated control, gradually declining as the N rates increased. Among the parameters recorded in the crop rotation, the values of the dry grain yield, the 1000-kernel mass, the protein yield and the starch yield were greatest at the 160 kg/ha N fertiliser rate, exhibiting a decrease at 240 kg/ha. Maximum values for the protein content and SPAD index were recorded at the highest N rate. It is important to note, however, that although the N treatments caused significant differences compared to the untreated control, the differences between the N treatments were not significant.
    In the given experimental year the values achieved for the untreated control in the crop rotation could only be achieved in the monoculture experiment at a fertiliser rate of 160 kg/ha N, indicating that N fertiliser rates could be reduced using a satisfactory crop sequence, which could be beneficial from the point of view of environmental pollution, crop protection and cost reduction.
    The weather in 2006 was favourable for maize production, allowing comparative analysis to be made of the genetically determined traits of the hybrids. Among the three hybrids grown in the monoculture experiment, Maraton produced the best yield, giving maximum values of the parameters tested at a fertiliser rate of 240 kg/ha N. The poorest results were recorded for Mv 277, which could be attributed to the fact that the hybrid belongs to the FAO 200 maturity group, while the other hybrids had higher FAO numbers. Maraton also gave the highest yields in the crop rotation experiment at the 160 kg/ha N level. All three hybrids were found to make excellent use of the natural nutrient content of the soil.
    It was proved that the protein content of maize hybrids can only be slightly improved by N fertilisation, as this trait is genetically coded, while the starch content depends to the greatest extent on the ecological factors experienced during the growing season.

  • Productivity and Nutrient Reaction of Maize Hybrids
    78-83
    Views:
    71

    Several factors influence the quantity and stability of maize yield, the most important being the nutrient supply, the hybrid and precipitation. In 2004, during the maize growing season the precipitation was more than the 30 year’s average, with 68.3 mm, but the distribution was unfavorable. The experiment was carried out in Debrecen at the Experimental Station of the University of Debrecen Centre of Agricultural Sciences, Department of Crop Production and Applied Ecology. We tested 10 various hybrids with their own genetic characteristics for five different fertilizer doses, in addition to the parcels without fertilization.
    The favorable results reached were due to the rainy season. The average yield varied between 7.78-9.67 tha-1. The DK 440, PR37M34, PR38A24, PR39D81 and PR36R10 of the hybrids reacted to higher fertilizer doses with significant growth yields, the yield (more than 11 tha-1) was the highest for N200, P125, K150 fertilizing. The other hybrids, DKC 5211, Mv Vilma and MV Maraton, gave similar results at the N120+PK fertilizer dose and the ensuing doses depressed the yield. Fertilization was more effective thanks to the precipitation. The fourth and fifth dose increased or decreased maize yield depending on the nutrient reaction of the hybrid. The agro-ecological optimum of NPK fertilization was N120, P75, K90 kgha-1.
    During the experiment we tested the moisture loss of five hybrids. The rainy crop year’s effect on the seed moisture content at harvest was higher than in previous years. The seed moisture content hybrids at harvest which have shorter crop years (FAO 300) was 18-19%, and hybrids with longer vegetation periods had more than 20% seed moisture content. DK 440 hybrid had the intensive moisture loss of the five hybrids, at the start of the measurement, the seed moisture content was higher than 40%, and it decreased to 18.6% by harvesting.

  • The significance of biological bases in maize production
    61-65
    Views:
    159

    The comparative trial has been set up in the Demonstration Garden of the Institute of Crop Sciences of the University of Debrecen, Centre for Agricultural and Applied Economic Studies, Faculty of Agricultural and Food Sciences and Environmental Management in 2012, with 24 hybrids with different genetic characteristics and growing periods. The soil of the trial is lime-coated chernozem, with a humus layer of 50–70 cm.

    The weather of the trial year was quite droughty; the monthly average temperature was 3–4 oC higher than the average of 30 years. High temperature, together with lack of precipitation occurred during the most sensitive phenophases of maize (flowering; fecundation, grain saturation).

    The following characteristics have been observed: starting vigour, date of male and female flowering, plant and cob height, dry-down dynamics during maturation and the change of yield composing elements has also been quantified. The yield was recalculated to 14% moisture content grain yield after harvesting.

    The beginning of the growing period was advantageous, therefore the analysed hybrids could grow a high (above 300 cm) and strong stem. The yield of the hybrids changed between 10.33 and 11.87 t ha-1, but as a result of the unfavourable climatic extremes, their genetic yield potential prevailed only at a rate of 30–40%. However, moisture content by the time of harvesting was good despite its early date (12th September); it remained under below 14% in most cases. Dry-down was measured on a weekly basis between 14th August and 5th September.

    The analysis of the qualitative parameters of the maize hybrids (protein %, oil % and starch %) resulted in significant differences. The most significant difference has been observed in the case of protein content (LSD5%=2.01). Oil content was the most advantageous in the case of hybrids belonging to the mid-late growing group (FAO 400). The X9N655 and 36V74 hybrids had the highest oil content (around 4%), while hybrids P9915 and 37F73 had significantly lower oil content. Starch content was above 70% in the case of every hybrid.

    Hybrid selection is highly important in terms of yield and yield security of maize, as well as the application of modern biological fundamentals and hybrid specific technology for the improvement of the level of cultivation technology.

  • Technological development of sustainable maize production
    83-88
    Views:
    144

    In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize.
    The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly eight ha field. The size of one plot was 206 m2, this it was a half-industrial experiment. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. Yield increasing effect of the fertilizer also depended on the number of plants per hectare at a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants per ha.
    In Hajdúszoboszló, in 2016 the amount of rainfall from January to October was 605 mm, which was more than the average of 30 years by 160 mm. The yield of hybrids without fertilization changed between 9.63–11.6 t ha-1 depending on the number of plants.
    The six tested hybrids is 10.65 t ha-1 in the average of the stand density of 60, 70 and 80 thousand plants per hectare without fertilization, while it is 12.24 t ha-1 with N80+PK fertilizer treatment. That increase in the yield is 1.6 t ha-1, it is significant.
    Da Sonka hybrid is sensitive to weather, it is able to produce 6 t ha-1 additional yield in case of favourable condition. However, it has a low stress tolerance. The most stable yields were observed at Kamaria and Pioneer hybrids. The effect of vintage is also an important factor on the yield. In average, the yield of maize was 6.81 t ha-1 in 2015, which was a drought year and 11.86 t ha-1 in 2016 that was a favourable year.

  • Grain yield and quality of maize hybrids in different FAO maturity groups
    126-131
    Views:
    64

    An improvement in the quality of maize grain by increasing the level of components responsible for its biological value is possible
    by using genetic means. However, a change in the genotype, together with improving the nutrient properties of the grain, also has some
    adverse consequences connected with a fall in yield and in resistance to diseases.
    Field experiments were conducted during three years (2003, 2004and 2005) to evaluate environmental effects on grain yield and
    quality responses of maize hybrids. Twenty one hybrids of various maturity groups (FAO 150-400) were planted to achieve an optimum
    (60-70 000 plants per hectare) plant populations and grown under the medium-N (80 kg N ha-1) fertilization. Environmental conditions
    significantly affected maize hybrid responses for grain yield, starch, oil and protein contents, and consequently, starch, oil and protein
    yields per hectare. Hybrids of flint type, which have a short vegetation period, had high protein and oil content but the yield averages
    were low due to the slower rate of starch incorporation. Hybrids of the dent type have a longer growing season and more intense
    carbohydrate accumulation, but low protein and oil contents. In wet years there was a higher rate of starch accumulation, while dry
    years are favorable for protein and oil accumulation. Positive correlation existed between starch content and grain yield and 1000-
    weight as well as between oil content and volumetric weight among tested hybrids. Negatively correlation existed between grain oil and
    starch content as well as between oil content and grain yield and 1000-weight. Thus, end-users that require high quality maize may need
    to provide incentives to growers to off set the negative correlation of grain yield with oil and protein content.

  • Investigation of combining ability and superiority percentages for yield and some related traits in yellow maize using line × tester analysis
    5-14
    Views:
    231

    Combining ability estimation is an important genetic attribute for maize breeders in anticipating improvement in productivity via hybridization and selection. This research was carried out to investigate the genetic structure of the 27 F1 maize hybrids established from nine lines derived from Maize Research Department and three testers, to determine general combining ability (GCA), determine crosses showing specific combining ability (SCA) and superiority percentages for crosses. Nine lines, three testers, 27 F1 hybrids and two check commercial hybrids (SC162 and SC168) were studied in randomized complete block Design (RCBD) with three replications during 2016. The results of mean squares showed that significant and highly significant for most studied traits (days to 50% tasseling, days to 50% silking, plant and ear height, ear position, ear length, no. of kernels per row, 100-kernel weight and Grain yield). Estimates of variance due to GCA and SCA and their ratio revealed predominantly non-additive gene effects for all studied traits. Lines with the best GCA effects were: P2 (line 11) and P6 (line 21) for grain yield, for testers Gm174 and Gm1021 had significant GCA effects for grain yield. The hybrids P5×Gm1021, P6×Gm1021, P7×Gm1021, P8×Gm1002, P9×Gm1002 had significant and negative SCA effects for grain yield. Crosses P1×Gm174, P2×Gm1002, P5×Gm1021, P6×Gm174, P6×Gm1021, P7×Gm1021, P8×Gm1002, P9×Gm1021 were the best combinations manifested and significant superiority percentages over than check varieties (SC162 and SC168) for most studied traits. Therefore, these hybrids may be preferred for hybrid crop development.

    Abbreviations: GCA general combining ability; SCA specific combining ability

  • Establishing biotic stress tolerance of maize (Zea mays L.) by measuring hydroxamic acid contents
    107-112
    Views:
    182

     

    Cyclic hydroxamic acids are the most considerable secondary metabolites in grasses and their main task is to protect these species from pathogens and pests. The cyclic hydroxamic acid content and common smut susceptibility were examined in our experiments. 27 maize hybrids were used for experimental plants in a climate room, where the plants were grown on a nutrient solution. An infiltration method was used for the inoculation of the plants. The total quantity of cyclic hydroxamic acids was determined and the ratio of infected plants and the ratio of inhibition was determined, too. Based on our results, on the basis of all hybrids’ data, the total hydroxamic acid content of the infected plants was higher than in the control. On the level of individual hybrids, only 9 of them had higher cyclic hydroxamic acid content in the case of infection. Increase in cyclic hydroxamic content induced by the fungus in this case is a tool for the fungus to suppress other pathogens and pests. Amongst the hybrids’ cyclic hydroxamic acid contents, significant differences were detected in the control and in the infected treatment, too. The so-called “sweetcorn” hybrids showed high level of cyclic hydroxamic acid content. According to the differences amongst hybrids, homogenous groups were created which groups differed in the case of control and infected treatment, because of the difference in increase of cyclic hydroxamic acid content. The examined hybrids showed different levels of infection and different rate of growth inhibition for the effect of inoculation. According to the infection caused damage hybrids were ranked. Infection caused notable damage for hybrids Prelude, Desszert 73, DKC5276 and DK440.

  • Effect of the plant density on different maize (Zea mays L.) hybrids yields and leaf area index (LAI) values
    51-56
    Views:
    145

    We have investigated the plant number reactions of three maize hybrids of various genotypes in a small-plot field experiment. The plant numbers were 50, 70 and 90 thousand ha-1, while the row distances were 45 and 76 cm. The experiment was set on the Látókép Experimental Farm of Centre for Agricultural Sciences of the University of Debrecen in four replications on calcareous chernozem soil.

    The assimilation area and the leaf area index have important role in development of the crop yield. The studied three different genotype maize hybrids reached its maximum leaf area index at flowering. The maximum leaf area index increased linearly with increasing plant density. The season-hybrids reached less yield and leaf area index. According to our experimental results, we have concluded that with the decrease of the row spacing, the yield increased in the average of the hybrids. The studied hybrids reached the maximum yield at 70 and 90 plants ha-1 plant density. We determined the optimal plant number that is the most favourable for the certain hybrid under the given conditions.The higher plant density was favourable at 45 cm row spacing than 76 cm. The hybrids reached the maximum grain yield at 45 cm row spacing between 76 712–84 938 plants ha-1, while the optimum plant density at 76 cm row spacing changed between 61 875–65 876 plants ha-1.

    The leaf area index values between the applied plant density for the flowering period (July 1, 24), we defined a significant differences. In the archived yields were significant differences at the 45 cm row spacing between 50 and 70, 90 thousand ha-1 plant density, while the number for the 76 cm row spacing used did not cause a significant differences in the yield. There were significant differences between the examined hybrids of yields.

  • Comparing the yield of maize (Zea mays L.) hybrids in organic and conventional agriculture
    13-17
    Views:
    60

    The European Green Deal was published by the European Commission in 2019. The main aim of the program is to reach net zero greenhouse gas emissions by 2050, making Europe the first climate-neutral continent in the world. To achieve this, criteria are also set for agriculture: increasing the share of land under organic farming to 25%, reducing the use of fertilisers and pesticides. However, the benefits of organic farming are widely debated. The aim of our study was to compare the yield of maize (Zea mays L.) hybrids bred in Martonvasar in two different cropping environments. The silage yields of 20 different maize hybrids were evaluated in a three replicate small plot experiment in an organic field and an adjacent conventional field. The average green mass yield of the hybrids was 36,58 t ha-1 in the organic field and 43,03 t ha-1 in the conventional. The green mass yield in the organic area was 20% lower than in the conventional area, and the dry matter yield and digestible dry matter yield were about 18% lower. Hybrids of different maturity groups responded differently to organic cultivation. The yields of early hybrids decreased more and late hybrids less in the organic farming compared to the conventional production.

  • Studies of plant density increase – on maize hybrids of various genotypes on chernozem soil
    87-92
    Views:
    137

    The yield and crop safety of maize are influenced by numerous ecological, biological and agrotechnical factors. It is of special importance to study one of the agrotechnical elements, the plant density of maize hybrids, which is influenced by the growing area conditions and the selected hybrid.

    We have investigated the effects of three different plant numbers (50 thousand plants ha-1, 70 thousand plants ha-1 and 90 thousand plants ha-1) on the yield of 12 maize hybrids of different genotypes in Hajdúság, on calcareous chernozem soil, in the Látókép Research Farm of the University of Debrecen, Centre for Agricultural Sciences, in 2013. The experiment was set in four replications, besides commonly applied agrotechnical actions. In the experiment, 1 hybrid of very early (Sarolta), 9 of early (P 9578, DKC 4014, DKC 4025, P 9175, NK Lucius, Reseda, P 37N01, DKC 4490, P 9494) and 2 of medium (Kenéz, SY Afinity) maturation were used.

    With the increase of the plant number, the number of individuals per unit area increases. According to our experimental results, we have concluded that with the increase of the plant number, the yield increased in the average of the hybrids. In the average of the hybrids, in the case of 50 thousand plants ha-1, the yield was 13 130 kg ha-1, in the case of 70 thousand plants ha-1, it was 13 824 kg ha-1, while in the case of 90 thousand plants ha-1, the yield became 13 877 kg ha-1.

    In addition to plant density increase, it is necessary to determine the optimal plant number that is the most favourable for the certain hybrid under the given conditions. To fulfil this aim, we have determined the optimal plant number corresponding to the maximum yield of the given hybrid, within the given plant number range. The optimal and applied plant numbers differ, since the optimal one could only be applied under ideal conditions. Since the agrotechnical actions cannot always be carried out in appropriate quality and one has to adapt to the weather conditions, thus we have determined a plant number range in the case of each hybrid. The hybrids were classified into categories of producible in narrow and broad plant number range.

  • Examination of Hybrid-specific nutrient supply at corn on chernozem soli
    91-95
    Views:
    120

    The effect of increasing fertilizer dosages on the yield of eight different maize hybrids (SY Ondina, NK Kansas, NK Lucius, NK Octet, NK Thermo, SY Flovita, SY Brillio, NX 47279) has been investigated in the crop-year of 2011. According to our results it can be stated that contrarily to the control treatment the application of different nutrient-levels has resulted a significant yield increment (2 000–5 800 kg ha-1).
    Based upon the results of this experiment we have drawn the conclusion that the nutrient level of 120 kg N+PK was the optimal for the investigated hybrids. The highest yield (14 475 kg ha-1–15 963 kg ha-1) of the hybrids with different genotypes has been produced in case of this fertilizer treatment. With the comparison of the control and the optimum-fertilizer treatments the yield-increasing effect of mineral fertilization and the different reaction of hybrids towards increasing fertilizer dosages have been proven. In case of the control treatments the best-yielding hybrids were NK Thermo (11 917 kg ha-1) and NX 47279 (11 617 kg ha-1). Contrarily on the optimal nutrient supply level the hybrids SY Brillio (15 876 kg ha-1) and NX 47279 (15 963 kg ha-1) have produced the highest yields. Summarizing, we can state that the hybrid NX 47279 has resulted stable and high yields in the fertilized treatments. Analysing the yield-increasing effect of 1 kg fertilizer active substance it was proven, that the hybrids SY Flovita (45.43 kg ha-1), SY Brillio (44.47 kg ha-1) and NX 47279 (42.33 kg ha-1) had a good reaction towards even lower nutrient supply levels as well. In case of the control treatment the average water utilization coefficient of the hybrids was significantly lower (35.2 kg mm-1), than in case of the optimal nutrient supply level (N120+PK) treatments (48.9 kg mm-1).
    Therefore the hybrid specific difference between the water utilization of genotypes could be revealed.

  • Examination of the impact of sowing technology models on the ear, constiuent and yield parameters of the yield formation elements of maize hybrids of different genotypes
    17-23
    Views:
    109

    Production year 2012 has been characterised by climatic extremities. The weather of this year can be considered very contradictory in terms of maize production. The droughty conditions of the winter and spring months had a negative effect on both germination and starting vigour. The favourable weather of May-July created ideal conditions for intensive growth and generative processes; however the lack of precipitation in August and September had a damaging effect on the development of yield composing elements and grain saturation processes as well. Under such circumstances, the sowing date models caused significant differences in the yield and quality of the hybrids belonging to different growth periods. The growing period of the maize hybrids has been shortened as a result of the unfavourable climatic conditions.

    Based on the trial results, it is verifiable that short growing period hybrids can be securely sown in draughty years even with a later sowing date, however using a later sowing date in the case of longer growth period hybrids may result even in a yield loss of 2–3 t ha-1. In the case of early and average sowing dates, with given yearly conditions the hybrids of the observed FAO 370-390 hybrid group provided the best result (12.40 t ha-1, 10.99 t ha-1), while in the case of the third, late sowing date the yield dominance of the FAO 290-350 hybrid group is the most significant (10.08 t ha-1).

    The analysis of the yield composing elements found that the P9578 hybrid has the highest shelling ratio, while its cob is the shortest. The P9494 hybrid has a high yield and the highest thousand grain weight, while the DKC 4983 has the longest cob and its thousand grain weight is above 300 g.

    The results confirm the fact that DKC 4590 has the highest yield potential and starch content, while in terms of oil and protein content the Szegedi 386 and NK Octet hybrids are the most important.