Search

Published After
Published Before

Search Results

  • Effect of net shading technology on the yield quality and quantity of chilli pepper under greenhouse cultivation
    5-9
    Views:
    266

    This study was undertaken to identify the effect of net shading technology on the total capsaicinoids, vitamin C and relative chlorophyll content expressed as SPAD (Soil Plant Analysis Development) values and total marketable fruit yield of ‘Star Flame’ chilli pepper (Capsicum annuum) for two harvesting times cultivated under modified atmosphere. ‘Star Flame’ pepper was grown under three (3) different net shading colours (white, red and green). Samples without net shading were used as control. Samples were subjected to chromatographic analyses using HPLC for the determination of total capsaicinoids and vitamin C. Interaction in shading technology and harvest times (p=0.010) had significant effect on total capsaicinoids as a result of green and white shading technologies showing higher differences when compared to control samples. Vitamin C content was observed to have increased in white and red shadings (p=0.001) after the first harvest and gradually decreased after the second harvesting time (p=0.002). Relative leaf chlorophyll content was significantly higher in white shading in the first and second harvest. Samples used as control had significantly higher marketable values when compared to white and green shadings with red recording low marketability of ‘Star Flame’ chilli peppers.

  • The significance of biological bases in maize production
    61-65
    Views:
    165

    The comparative trial has been set up in the Demonstration Garden of the Institute of Crop Sciences of the University of Debrecen, Centre for Agricultural and Applied Economic Studies, Faculty of Agricultural and Food Sciences and Environmental Management in 2012, with 24 hybrids with different genetic characteristics and growing periods. The soil of the trial is lime-coated chernozem, with a humus layer of 50–70 cm.

    The weather of the trial year was quite droughty; the monthly average temperature was 3–4 oC higher than the average of 30 years. High temperature, together with lack of precipitation occurred during the most sensitive phenophases of maize (flowering; fecundation, grain saturation).

    The following characteristics have been observed: starting vigour, date of male and female flowering, plant and cob height, dry-down dynamics during maturation and the change of yield composing elements has also been quantified. The yield was recalculated to 14% moisture content grain yield after harvesting.

    The beginning of the growing period was advantageous, therefore the analysed hybrids could grow a high (above 300 cm) and strong stem. The yield of the hybrids changed between 10.33 and 11.87 t ha-1, but as a result of the unfavourable climatic extremes, their genetic yield potential prevailed only at a rate of 30–40%. However, moisture content by the time of harvesting was good despite its early date (12th September); it remained under below 14% in most cases. Dry-down was measured on a weekly basis between 14th August and 5th September.

    The analysis of the qualitative parameters of the maize hybrids (protein %, oil % and starch %) resulted in significant differences. The most significant difference has been observed in the case of protein content (LSD5%=2.01). Oil content was the most advantageous in the case of hybrids belonging to the mid-late growing group (FAO 400). The X9N655 and 36V74 hybrids had the highest oil content (around 4%), while hybrids P9915 and 37F73 had significantly lower oil content. Starch content was above 70% in the case of every hybrid.

    Hybrid selection is highly important in terms of yield and yield security of maize, as well as the application of modern biological fundamentals and hybrid specific technology for the improvement of the level of cultivation technology.

  • Evaluation of harvesting technology of vineyard pruning based on a Mátra wine region case study
    91-100
    Views:
    116

    Wineyard pruning utilization for energy purpose is not only a theoretical possibility, the machine background has also been developed. Economic- and environmental experimentations has made by specialists and they seek to developed the best practice in logistics suitable for local conditions and they propagate the results for the potential users. Nevertheless, the utilization does not seem to be typical in Hungary and some other wine-grower countries. For example, in Hungary the additional energy from vineyard pruning eventuates – tillage, nutrient supply; – phy+tosanitary, environmental pollution; – energy management and economic questions.

    In Hungary the most important problem is practice of the vineyard pruning utilization were mentioned by the users is the establishment of collection system and the high logistic costs as Marczinkó (2007) experiences confirm this. As I experienced in practice, the winegrowers are uninterested in utilization. Most of them burn it at the end of the vineyard in many cases without considering of the relevant statutory prohibition.

    As my own several years expriment shows at Mátra wine region it is not the technical background which causes the failure. We can use effectively balers or chippers for collection. The cost of chipping is 14 535–27 000 Ft per hectars with the introduced technologies on Mátra wine region. The cost of 1 GJ of heat production is 606–1125 Ft. We can substitute the fuel with vineyard pruning and it means approximately 115 000 Ft saving for a family household per year.

  • Harvesting system established for the utilisation of Miscanthus sinensis ‘tatai’ “energy cane” in biomass power plants
    143-150
    Views:
    145

    The increasing demand for energy worldwide and the resulting environmental impacts of fossil fuels forced many countries to turn to renewable energy resources as a clean and sustainable alternative. More than a third of Europe’s binding renewable energy source target of 20% by 2020 will come from solid biomass for electricity and heating according to the National Renewable Energy Action Plans submitted by member states of the European Union (EU) to the European Commission. To achieve this goal long-term yield studies in renewable energy plants are important to determine mean annual biomass and energy yield, and CO2 emission. Field experiments worldwide and also in Europe have demonstrated that Miscanthus, a fast-growing C4 rhizomatous grass can produce some of the highest biomass and energy yield per hectare of all potential energy plants. Miscanthus is a plant that originates from the southern slopes of the Himalayas. It was bred for the Hungarian climatic conditions in 2006 under the name of Miscanthus sinensis ‘Tatai’ (MsT). The species has high frost and drought tolerance and high energy value. This is why there is growing demand for the biomass (lignocellulose) produced by growing this plant. The biomass, produced from the high yield energy reed, can be transported to power plants in large quantities, in forms of bales. Its household consumption is not yet significant. This study presents the external features, characteristics, propagation and plantation process of MsT energy reed. The study also demonstrates the harvest technology of the species worked out between 2009–2012 in Tata, Hungary and the options of supplying to biomass

    power stations.

  • Evaluation of dry matter accumulation of maize (Zea mays L.) hybrids
    35-41
    Views:
    369

    The increase of the grain yield of maize is closely correlated with its seasonal dry matter accumulation. Dry matter is accumulated into the grain yield during the grain filling period. The following maize hybrids were involved in the experiment: Armagnac FAO 490, Loupiac FAO 380 and Sushi FAO 340. In order to determine dry matter content, two samples per week were taken on the following days: 22nd, 25th, 28th, 31st August, 4th, 7th, 14th, 18th, 22nd, 25th, 29th September and 2nd, 6th, 9th, 13th October. In the course of sampling the weight of 100 grains from the middle section of 4 ears was measured in 4 replications. Dry matter content was determined after drying to constant weight in a drying cabinet at 60 °C. Harvesting was performed on 13th October 2017.

    The daily precipitation sum was determined by local measurements, while the daily radiation and temperature data were provided by the Meteorological Observatory Debrecen of the National Meteorological Service in Budapest. Among the agrometeorological parameters, an analysis was made of the precipitation during the growing season, effective heat sums during the vegetative and generative phase, and the water supplies. The daily heat sums were determined using the algorithm proposed.

    The amount of precipitation in the winter period before the 2017 growing season was 210 mm. The soil was saturated until its field capacity. The rather dry and warm March and April had a favourable effect, but there was no worthy amount of precipitation until May (51 mm) due to the condition of the dried seedbed. Sowing was performed on the 5th of May 2017 in a randomised small plot experiment. There was favourable precipitation and temperature during the growing season, thereby providing ideal conditions for maize development, growth and yield formation. There was near average amount of precipitation in each year. The total amount of precipitation in the summer period is 342 mm. Temperature was mostly above the average, but there was no long and extremely warm period.

    The Armagnac hybrid reached its highest dry matter mass 126 days after emergence. Physiological maturity was reached sooner (on the 119th day) in the case of Loupiac, and even sooner in the case of Sushi (116th day). The thousand grain weight of Sushi (which has the shortest ripening period) was 286 g at the time of physiological maturity, while that of Loupiac was 311 g. Compared to Sushi, Armagnac showed 12 g more dry matter accumulation (306 g). In the case of all three examined hybrids, physiological maturity was preceded by an intensive phase, when the dynamics of dry matter accumulation was rather quick. On average, Sushi gained 2.8 g dry matter per day between 103 days following emergence and physiological maturity, while the same values were 3.2 g for Armagnac and 3.3 g for Loupiac. The aim of the regression line slope is to predict the behavior of the dependent variable with the knowledge of the values and characteristics of the independent variables using the regression line equation. Furthermore, to determine how the location affected the dynamic of dry matter accumulation in the Armagnac, Loupiac and Sushi hybrids. In regression analysis, the coefficient of explanation showed that the effect of day in the Armagnac was 97%, in the Loupiac 94%, in the Sushi 90 %. The determination coefficient (R2) is useful in determing how the regression equation fits. But, as we have seen, the determination coefficient alone is not sufficient to verify the model’s accuracy, in addition to the determination coefficient (R2), the normality of the data or the residuals, the variance of the variables at different levels, the independence of the data relative to time and non-oblique. Observations are evaluated for the correctness of the fitted model.

    Dry matter values decreased evenly and slightly following physiological maturity. According to our research results, it was established that physiological maturity is followed by a moderate dry matter loss. Until harvesting, Armagnac lost 40 g of its thousand mass weight in 29 days, while the same value pairs were 69 g in 36 days for Loupiac and 29 g in 39 days for Sushi. Loupiac – which had the highest weight at the time of physiological maturity – lost the most of its dry weight; therefore, Armagnac and Sushi had higher values at the time of harvesting.

  • Topology in the fruit plantation
    253-257
    Views:
    198

    The localization of fruit trees, the topology of the branch structure and the spatial structure of the canopy are important to plan sitespecific agro-ecological and production technology projects in an orchard. The currently used instruments and technologies – in the precision agriculture – give opportunities to obtain these informations. The examinations were carried out in the Study and Regional Research Farm of the University of Debrecen near Pallag with the use of a GreenSeeker 505 Hand Held™ Optical Sensor Unit, and its interface the Trimble AgGPS FmX Integrated Display board computer. The collected spectral data were completed with the 3D point cloud by Leica ScanStation C10 laser scanner. The laser impulse data and the vegetation index values were integrated in a unified 3D system. The integration of the two special data collection system provides new opportunities in the development of precision production technology system. The results could be directly used in phytotechnology, water management, plant protection and harvesting in orchards. Our elaborated method can supply digital high spatial accuracy guidance data for development of the automated machines, which could provide some new developmental way in the immediate future.

  • Potential use of bamboo in the phytoremediation in of heavy metals: A review
    91-97
    Views:
    287

    There are many literature sources focusing on the phytoremediation of woody plants, but there are only few dealing with the phytoremediation of bamboo plants. Phytoremediation technology has the advantages of little disturbance to the environment and low remediation cost. Bamboo mainly exists in tropical and subtropical regions. As an energy plant, bamboo has a fast growth cycle, large biomass, simple cultivation, high economic efficiency, and convenient harvesting, which highlights the advantages of bamboo in phytoremediation. In addition, bamboo plants have good tolerance and uptake ability to heavy metals and have high application potential and development value in uptaking heavy metal contaminated soil. However, due to climate, temperature and other reasons, bamboo cannot be widely planted in most countries. Research status of remediation of heavy metal contaminated soil by bamboo plants is summarized. The feasibility of its application in heavy metal contaminated soil is discussed in this paper. Aiming at the shortcomings of existing research, bamboo plants have a prospect in the field of plant phytoremediation for the future.

  • Development of technology elements for growing of perennial sorghum
    15-17
    Views:
    127

    Optimal sowing time for perennial sorghum under irrigation is when soil temperature at the depth of sowing reaches up to 10–11 °С, harvesting for the green mass has to be done when panicle is situated on the stem in 10 sm from the flag leaf and hight of cut must be 11 sm.

  • Effect of different production types on the yield and ß-carotene content of sweet potato /cultivar Ásotthalmi- 12/
    45-49
    Views:
    150

    Production of sweet potato is extending in Hungary, despite the fact that there is no field-specific production technology. Therefore, many growers cannot utilize potential yields and quality. The goal of this study was to determine the optimal production method of the Ásotthalmi 12, a Hungarian sweet potato cultivar which can adapt to the Hungarian climate. The effect of single and twin rows production on the yield of this cultivar was examined. The planting was carried out on June 24th, the harvesting on October 20th and the growing-season was 120 days long. Uniform nutrient supply was applied to the whole field experiment. During basic fertilization, 206 kg Knd 20 kg N, 36 kg P ha-1 were used on the soil. While forming the ridges, we used an additional 25 kg N, 45 kg P and 62.5 kg K ha-1. We adopted drip tape irrigation on the experimental field. After the planting, from the 8th week of the vegetation, another 21 kg ha-1 K, 10 kg ha-1 MgSO4, and 2 kg ha-1 Ca(NO3)2 was added in one dosage weekly, until the 13th week of vegetation. At the evaluation of the experiment, we examined the yield regarding the whole experimental plot. SPAD and fluorescence measurements were carried out on 08.16. 2019, 08.28.2019, and on 09.13.2019, during the watering break. To demonstrate the difference between the dates, we applied ANOVA and Tukey post-hoc tests. For the measurement of phytonutrients HPLC, a liquid chromatograph was used, where the carotenoid content of the Ásotthalmi 12 cultivar was determined in connection with the different production methods. Test results showed that twin rows production leads to a nearly 30% greater yield, than single row production. We determined, that the growth of yield correlates negatively to the ß-carotene content of the Ásotthalmi 12 cultivar sweet potato.