Search

Published After
Published Before

Search Results

  • Disease incidence of shot-hole disease of plum in two training systems
    107-110
    Views:
    110

    Of the foliar diseases of European plum, Wilsonomyces carpopilus is the most commonly occurring fungal pathogen. The aim of this two-year study was to investigate the susceptibility of ‘Čačanska lepotica’ plum variety to shot-hole disease (Wilsonomyces carpophilus) in two different training system with 4 x 1.5 m and 6 x 3 m tree spacings. The obtained results showed that the cultivar is susceptible to this disease and by the end of the vegetational period disease incident was above 50% in both years in both tree spacings. In 2018 disease incidence was higher in both spacing than in 2019, reaching almost 90% at the 4 x 1.5 m tree spacing plot. There were few significant differences between high and low density tree spacings. The results highlighted the importance of inoculum accumulation late in the season.

  • Pathogenic fungal pathogens and diseases: a mini review of effects on maize production
    93-102
    Views:
    109

    Maize, the most important cereal globally in terms of nutrition and income, is highly susceptible to biotic stresses caused by various pathogens, including fungi, bacteria, viruses, nematodes, and parasitic plants. This review gives an account of the epidemiology, diversity, and effect of fungal diseases on maize, with a focus on common pathogens, namely Ustilago sp. and Fusarium sp. Additionally, the review explores the major contributors to the pathogen and disease development, namely: soil quality, temperature, and humidity. Clarity is made herein about the damages and effects on maize growth, including development, yield, and grain quality, with marked economic losses recorded annually. The increasing threat of climate change escalates the dangers, pointing out the urgency for sustainable control strategies of the diseases. Conventional methods of using chemicals have been rendered inadequate for maize fungal disease control, underscoring the need for applying biopesticides and natural products obtained from microorganisms as innovative, remediation strategies. Together with these innovations are biocontrol agents that provide better solutions for reducing the reliance on chemical formulations as well as strengthening a healthier agricultural environment. Finally, a comprehensive understanding of the interaction between maize pathogens and environmental determinants is vital for the development of more effective integrated pest management strategies to enhance maize productivity and subsequent food safety.

  • The effect of reduced sprinkler programs on the main fungal pathogens of apple in environmentally sound production systems
    13-16
    Views:
    208

    Aim of our two-year study was to evaluate the possibilities of chemical use against key fungal pathogens (apple scab, apple powdery mildew and brown rot) in integrated and organic apple production. Therefore, first, disease incidence was compared in standard and reduced spray programmes and then each technological variation was evaluated from practical point of view. Altogether four spray programmes were compared. Standard and reduced spray programmes were performed in the integrated production. The same pesticides were used in the reduced spray
    programme compared to standard one but numbers of spray were reduced by 25% at the second half of the season. Standard and reduced spray programmes were also performed in the organic production and the numbers of spray were reduced by 40% in the reduced spray programme. Incidence of diseases was low in both standard and reduced spray programmes in integrated production. Diseases level was high in the organic production and disease increased significantly in the reduced spray programmes compared to standard programmes. Results showed that reduction in spray numbers at the second half of the season can be used practically in integrated production. Omission of sprays in organic
    production resulted in serious disease management risk; therefore, it is not recommended for practical use. 

  • Studies of Cryphonectria parasitica (MURR.) BARR subpopulations on Quercus petraea in Ukraine
    70-75
    Views:
    289

    Chryphonectria parasitica (Murr.) Barr, the casual agent of chestnut blight disease, which is one of the most important fungal pathogens of chestnut (Castanea sativa). The disease seriously affected the chestnut in Northern-America and in Europe as well. It is important to mention that the pathogen does not only infect the chestnut but oak species (Quercus spp.) also. In the Carpathian-Basin, the chestnut is endemic in the Mecsek mountains, in Zala, in Somogy counties but it also can be found in the Danube-Bend. In the Carpathian-Basin (outside Hungary) the chestnut is found in Slovakia, Ukraine, Romania. In our study bark samples infected by Cryphonectria parasitica were collected from Bobovyshche, Serednje and Rostovjatica (Ukraine). The rate of infected chestnut tree were higher than 90% around Bobovyshche and beside chestnut, the symptoms were detected on oak trees as well. We collected bark samples from chestnut and oak as well and then we isolated the pathogen Cryphonectria parasitica in the lab of University of Debrecen. Symptomatological observations, laboratory examinations on fungus morphology, as well as comparisons of ITS sequency homology were made and approved that the causal agent of new disease was Cryphonectria parasitica. Our results proved that the Cryphonectria. parasitica infects oak trees beside chestnut in the Carpathian-Basin. Further studies are needed to determine the VCG (Vegatative Compatibility Group) group of the Cryphonectria parasitica found on oak trees. 

  • Examination of the efficacy of different fungicides against Macrophomina phaseolina and Sclerotinia sclerotiorum in laboratory conditions
    21-24
    Views:
    491

    Macrophomina phaseolina and Sclerotinia sclerotiorum are two significant fungal pathogens of sunflower. M. phaseolina causes charcoal rot and ashy stem blight in several important crop species. Sclerotinia sclerotiorum causes white mold disease which can occur as middle stalk rot, head rot and premature plant death. Due to the wide host range of the two pathogens and their survival structures, crop rotation cannot provide sufficient protection against them. In our experiment, we selected two fungicides, Mirage and Prosaro, which are widely used in practice, and we tested their efficacy against the two pathogens. The efficiency of these fungicides was tested at a concentration of 10; 20; 50; 100 and 500 ppm. The Prosaro totally inhibited the mycelial growth of both pathogens at a concentration of 50 ppm, 100 ppm and 500 ppm. The Mirage caused total mycelial growth inhibition in all treatments against both pathogens.

  • Laboratory diagnoses of the isolates of chestnut blight disease fungus Cryphonectria parasitica (MURR. BARR)
    45-52
    Views:
    302

    Chryphonectria parasitica, the casual agent of chestnut blight, is one of the most important fungal pathogens of chestnut (Castanea spp.) in Europe and Hungary. In this study, we analyzed the ITS region of five Cryphonectria parasitica strains isolated from different location of Hungary. The differences among the Cryphonectria parasitica isolates were not insignificant because only two sites were considered as informative for the parsimony analysis. As the differences among geographically different isolates were insignificant, we mean that the evolutionary distance by ITS sequences within Hungarian Cryphonectria parasitica isolates is too small to get well based consequences for the phylogenetic relationships.

  • A dual infection of two microscopic fungi on common milkweed (Asclepias syriaca) in Hajdúság region (East-Hungary)
    189-195
    Views:
    296

    Common milkweed (Asclepias syriaca L.) is one of the most noxious and invasive weed species in Hungary. A. syriaca invades arable lands, horticultural and forestry plantations, natural and semi-natural habitats too. In cases of field crops it can cause considerable yield losses mostly in maize (2–10%), soybean (12–32%) and sorghum (4–29%), but only with high rate of coverage. It can also increase these problems that the common milkweed can be serve as reservoir and host for viruses, other pathogens and pests.
    Because of the importance of common milkweed and in spite of demand to develop effective biological control, until now has not been developed a proper control program against A. syriaca. The aim of our research was to identify the necrotrophic fungal pathogens, which were involved in notable disease occurrence on this weed in different parts of Hajdúság region of Eastern-Hungary in 2016.
    To the isolation of fungi from leaves and their identification were based on morphological colony characters on potato dextrose agar (PDA) and Sabouraud dextrose agar (SDA). To the description of conidia features were used PDA for Alternaria and synthetic low-nutrient agar (SNA) for Fusarium species, respectively. The examination of axenic cultures revealed that the fungi isolated from the leaves of common milkweed were Fusarium sporotrichioides and Alternaria alternata.

  • Cytochrome b diversity of Hungarian Botrytis cinerea strains
    18-21
    Views:
    244

    In the mitochondrion of eukaryotes, cytochrome b is a component of respiratory chain complex III. Cytochrome b is encoded by the
    cytochrome b (CYTB) gene located in the mitochondrial genome. The fungicidal activity of QoIs relies on their ability to inhibit mitochondrial respiration by binding at the so-called Qo site (the outer quinol-oxidation site) of the complex III. Since their introduction, QoIs (like azoxystrobin) have become essential components of plant disease control programs because of their wide-ranging efficacy against many agriculturally important fungal diseases like grey mould on various crops. QoI resistance primarily arises from a target-site-based mechanism involving mutations in the mitochondrial CYTB. As the management of grey mould is often dependent on chemicals, the rational design of control programs requires the information about the diversity of genes connected with resistance in field populations of the pathogen.
    Monospore B. cinerea field isolates has been collected during 2008-2009 from different hosts in Hungary. PCR fragment length analysis
    indicated the high frequency presence of type large intron in the isolates while in a few strains G143A substitution could also be detected.
    These results indicated the heterogeneity of CYTB in the Hungarian B. cinerea populations, which possibly involve the heteroplasmy of this
    mitochondrial gene, moreover indicates the existence op azoxystrobin resistant populations in Hungary.
    This work was supported by NKFP-A2-2006/0017 grant. Erzsébet Fekete is a grantee of the János Bolyai Scholarship (BO/00519/09/8).

  • Sour cherry anthracnose and possibilities of the control with special regard to resident Glomerella population in sour cherry plantations of East Hungary
    12-17
    Views:
    247

    Anthracnose is considered one of the most destructive diseases for sour cherry production due to the rapid development of the disease on fruits. Glomerella cingulata (Stoneman) Spauld. & H. Schrenk (anam.: Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. in Penz.) has been the fungal pathogen responsible for anthracnose in last decades. Yield losses greater than 90% may occur under epidemic conditions. C. acutatum (J.H. Simmonds, 1968) strains were isolated of sourcherry plantations in East Hungary and this pathogen, new for Hungarian microbiont became recently dominant. Contrarily to the former species it is certainly transmitted with ants during fruit ripening. About third of strains proved to be cutinase producers that enable them to actively penetrate via cuticule, and these strains infect directly berries of blackberry, grape and tomato as well as plum and apple. Most of cutinase negative strains could also infect these fruits after mechanic injury. All strains of both species produce amylase, cellulase, lecithinase, lipase, polyfenoloxydase and protease in vitro, although the activity of these enzymes highly varied in the medium. The only C. acutatum strains produced noticeable amount of chitinase. Strains, tolerant to recently applied fungicides to control the anthracnose, could be isolated of sour cherry plantations that might be the cause of ineffectiveness of control measures in 2010. The mycofungicide containing mixture of three Trichoderma species in oil carrier could efficiently depress the development of anthracnose in ripening sour cherry.

  • Management of phytopathogens by application of green nanobiotechnology: Emerging trends and challenges
    15-22
    Views:
    538

    Nanotechnology is highly interdisciplinary and important research area in modern science. The use of nanomaterials offer major advantages due to their unique size, shape and significantly improved physical, chemical, biological and antimicrobial properties. Physicochemical and antimicrobial properties of metal nanoparticles have received much attention of researchers. There are different methods i.e. chemical, physical and biological for synthesis of nanoparticles. Chemical and physical methods have some limitations, and therefore, biological methods are needed to develop environment-friendly synthesis of nanoparticles. Moreover, biological method for the production of nanoparticles is simpler than chemical method as biological agents secrete large amount of enzymes, which reduce metals and can be responsible for the synthesis and capping on nanoparticles.

    Biological systems for nanoparticle synthesis include plants, fungi, bacteria, yeasts, and actinomycetes. Many plant species including Opuntia ficus-indica, Azardirachta indica, Lawsonia inermis, Triticum aestivum, Hydrilla verticillata, Citrus medica, Catharanthus roseus, Avena sativa, etc., bacteria, such as Bacillus subtilis, Sulfate-Reducing Bacteria, Pseudomonas stutzeri, Lactobacillus sp., Klebsiella aerogenes, Torulopsis sp., and fungi, like Fusarium spp. Aspergillus spp., Verticillium spp., Saccharomyces cerevisae MKY3, Phoma spp. etc. have been exploited for the synthesis of different nanoparticles. Among all biological systems, fungi have been found to be more efficient system for synthesis of metal nanoparticles as they are easy to grow, produce more biomass and secret many enzymes. We proposed the term myconanotechnology (myco = fungi, nanotechnology = the creation and exploitation of materials in the size range of 1–100 nm). Myconanotechnology is the interface between mycology and nanotechnology, and is an exciting new applied interdisciplinary science that may have considerable potential, partly due to the wide range and diversity of fungi.

    Nanotechnology is the promising tool to improve agricultural productivity though delivery of genes and drug molecules to target sites at cellular levels, genetic improvement, and nano-array based gene-technologies for gene expressions in plants and also use of nanoparticles-based gene transfer for breeding of varieties resistant to different pathogens and pests. The nanoparticles like copper (Cu), silver (Ag), titanium (Ti) and chitosan have shown their potential as novel antimicrobials for the management of pathogenic microorganisms affecting agricultural crops. Different experiments confirmed that fungal hyphae and conidial germination of pathogenic fungi are significantly inhibited by copper nanoparticles. The nanotechnologies can be used for the disease detection and also for its management. The progress in development of nano-herbicides, nano-fungicides and nano-pesticides will open up new avenues in the field of management of plant pathogens. The use of different nanoparticles in agriculture will increase productivity of crop. It is the necessity of time to use nanotechnology in agriculture with extensive experimental trials. However, there are challenges particularly the toxicity, which is not a big issue as compared to fungicides and pesticides.

  • Flesh firmness examination of scab-resistant apple varieties in a storage experiment
    93-98
    Views:
    284

    Of the different physical characteristics of fruits, one of the most essential qualities is flesh firmness, as is an important parameter when selling fresh apples, processing the fruit (processing industry) and during its storage. In the scope of our research, we examined five apple varieties originating from the Derecske horticultural site of KITE cPlc. in 2016. The plantation was planted to be suitable for intensive apple production. Samples were collected at the time of maturity (August-October) of the given variety. The five examined apple varieties (Gaia, Isaaq, Modí, Smeralda and Fujion) are all resistant to apple scab (fungal disease caused by Venturia inaequalis). The two-month storage experiment was conducted at 16-17 °C, which had an aggressive effect on our stored apples. Flesh firmness, weight and diameter were measured on three dates for each of the five apple varieties. Our results were evaluated using IBM SPSS Statistics 20 software. We aimed to compare flesh firmness, weight and diameter of the five apple varieties and their changes during storage. Isaaq (86.34 N/cm2), Modí (94.06 N/cm2) and Fujion (84.90 N/cm2) had outstanding initial flesh firmness results. The Modí apple variety provided the best storage parameters.

  • Increase of Wheat (Triticum aestivum L.) Resistance to Leaf Rust (Puccinia tritici) via Gene Transformation
    127-129
    Views:
    160

    Leaf rust is one of the most significant fungal disease of wheat not only in Hungary but also in other parts of the world. For improving leaf rust resistance of winter wheat variety (Hajdúság, 2003) produced by conventional breeding methods, verified by results of variety tests, showing outstanding results in the aspect of the most important economic values, integration of tissue culture technics, genetic engineering and traditional
    methods may provide facilities. Building the gene(s) responsible for resistance into the determined genome can improve the resistance in a way that changes other features of the plant slightly or not at all. In the course of genetical transformation of the variety Hajdúság we applied one of the wheat’s own effecient green-tissue specific insurer genetical regulator, the promoter of ribulose carboxylase 1-5 bisphosphate (RuBisCo) ‘s small
    subunit to control the expression of the gene cmg1.

  • Development of the antioxidant indexes (FRAP, TFC, TPC) of scabbing resistant apple varieties in storage
    89-94
    Views:
    238

    One of the most important groups of bioactive substances in apples are antioxidants, which have a health-preserving effect. The amount of these compounds varies not only during the ripening of the apple fruit, but also continuously during post-harvest storage. A growing group of health-conscious consumers are looking for apple varieties with a nutritional value that satisfies their needs.

    In the scope of our research, we examined 5 apple varieties originating from the Derecske horticultural site of KITE cPlc. in 2016. The plantation was planted to be suitable for intensive apple production. Samples were collected at the time of maturity (August-October) of the given variety. The 5 examined apple varieties (Gaia, Isaaq, Modí, Smeralda and Fujion) are all resistant to apple scab (fungal disease caused by Venturia inaequalis). The 2-month storage experiment was conducted at 16–17 °C, which had an aggressive effect on our stored apples. Total polyphenol (TPC) and flavonoid (TFC) content as well as FRAP values of the apples were measured. Measurements were taken immediately after harvest and after 1 and 2 months of storage. Our results were evaluated by using the IBM SPSS Statistics 20 software. Our aim was to compare the antioxidant results of 5 scab-resistant apple varieties, which change continuously during storage.

    The antioxidant content of our apple varieties increased during 2 months storage. The best result was achieved by the Modí apple variety (FRAP: 467.32 mg/100g; TFC: 317.76 mg/100g; TPC: 1771.97 mg/100g). Consumers may want to consume apples stored for a longer period of time if they are to absorb large amounts of antioxidants.