Search

Published After
Published Before

Search Results

  • Soil, nutrient, and fertiliser requirements for maize (Zea mays) production: A narrative review
    85-97
    Views:
    711

    Maize (Zea mays) is a key staple crop essential for global food security, with its productivity heavily influenced by soil, nutrient, and fertiliser management. This review examines the requirements for optimal maize production by analysing recent literature on soil properties, nutrient uptake, and fertilisation practices. A systematic approach was used to gather relevant studies from Google Scholar, Scopus, and Web of Science, focusing on peer-reviewed articles, books, and conference proceedings published in the last 10 years. Keywords such as “maize soil requirements” and “nutrient management for maize” guided the search, and both global and region-specific research were included to capture diverse agricultural systems and environments. Key insights were extracted to understand best practices, challenges, and technological advancements influencing maize yield. The findings provide a comprehensive overview of the current state of knowledge on soil and nutrient management for maize cultivation, highlighting optimal practices and emerging trends in fertilisation techniques. The review aims to support improved management strategies for yield maximisation and sustainable maize production across various agricultural landscapes, ensuring food security in the face of changing environmental conditions.

  • Pathogenic fungal pathogens and diseases: a mini review of effects on maize production
    93-102
    Views:
    1

    Maize, the most important cereal globally in terms of nutrition and income, is highly susceptible to biotic stresses caused by various pathogens, including fungi, bacteria, viruses, nematodes, and parasitic plants. This review gives an account of the epidemiology, diversity, and effect of fungal diseases on maize, with a focus on common pathogens, namely Ustilago sp. and Fusarium sp. Additionally, the review explores the major contributors to the pathogen and disease development, namely: soil quality, temperature, and humidity. Clarity is made herein about the damages and effects on maize growth, including development, yield, and grain quality, with marked economic losses recorded annually. The increasing threat of climate change escalates the dangers, pointing out the urgency for sustainable control strategies of the diseases. Conventional methods of using chemicals have been rendered inadequate for maize fungal disease control, underscoring the need for applying biopesticides and natural products obtained from microorganisms as innovative, remediation strategies. Together with these innovations are biocontrol agents that provide better solutions for reducing the reliance on chemical formulations as well as strengthening a healthier agricultural environment. Finally, a comprehensive understanding of the interaction between maize pathogens and environmental determinants is vital for the development of more effective integrated pest management strategies to enhance maize productivity and subsequent food safety.

  • A global bibliographic review of soil variability trends on arable land: An impetus to sustainable land management
    27-39
    Views:
    3

    Crop production is significantly affected by soil properties under the influence of climate, management practices, and geographical location. Soil variability affects the development, quality, biochemical reactions, and heterogeneity of soil. The most recent research has focused on soil variability monitoring, highlighting the importance of soil testing. This review aimed at identifying global research trends and assessing soil testing in monitoring variability on arable land, based on the bibliographic method. Literature search in Scopus Database (2020-2023) yielded 8,898 documents, refined to 815 articles. VOSviewer 1.6.20 Software was used for analysing exported data. The results revealed a growing emphasis on monitoring soil variability, with key countries including India, United States of America (USA), China, Australia, Canada, United Kingdom, and Brazil. Funding mainly came from Asia, North America, and Europe. Common monitoring approaches included soil tests and remote sensing, focusing on organic carbon, nitrogen, phosphorus, potassium, microorganisms, and soil moisture. However, digital illiteracy and high costs were major hindrances to using remote sensing and modern soil testing tools. The study suggests that whereas soil variability monitoring is essential for sustainable land management, development of affordable soil testing equipment and improved digital education are needed for its enhanced adoption.

  • Maize nutrient dynamics: growth, yield and sustainable practices: A narrative review
    83-91
    Views:
    0

    Nutrient acquisition is the fundamental regulator of maize (Zea mays) growth, development, and yield. The present narrative review intends to integrate existing information on dynamics of nutrient uptake in maize under scrutiny for understanding how the processes affect growth and yield. We focus on the effective absorption and utilization of macronutrients (N, P and K) and micronutrients that promote plant health, grain development, and stress tolerance. Key determinants of nutrient availability (soil type, pH, organic matter, environment) and physiological or yield impacts of deficiency are studied. Strategies to optimize uptake efficiency precision application of fertilizer, organic fertilizers, and sustainable soil management are discussed. Optimizing these dynamics is central to maize productivity, enhancement and sustainable crop production. This review provides valuable insights into optimizing maize nutrition for improved food security and sustainable crop production.

  • Soil moisture sensors for sustainable water management in field crop production: A review of advances and application challenges
    41-54
    Views:
    6

    Efficient water management is essential for sustainable production of field crops amid climate change, population growth, and water scarcity. Traditional irrigation practices often lead to water use inefficiency, which harms soil health and reduces yields. To address this, reviewing previous studies on soil moisture sensors provides important context and guidance. Literature from Scopus, Google Scholar, and WoS (2019–2025) on soil moisture sensors for sustainable water management in field crops was screened. Out of 244 retrieved publications, 79 met the inclusion criteria with a focus on sensor technologies, applications, advances, and challenges, analysed thematically for research gaps and insights. Based on the findings, soil moisture sensors boost water management, improve yields of field crops, and support sustainable agriculture. However, hindrances related to high costs, lack of awareness, technical complexity, calibration needs, energy challenges, data interpretation difficulties, and compatibility problems hinder effective soil moisture sensor results. Integrating soil moisture sensors with decision-support tools optimises water use and protects soil health to promote long-term productivity under climate variability. Future research should strategise on the development of low-cost, reliable soil moisture sensors with technology subsidies, training, policy support, durability, integration, and simple data to empower farmers to adopt precision water management.

  • Dynamics of alfalfa production in Hungary: Changes in harvested area, yield, and total production over 30 years (1990 – 2024)
    163-169
    Views:
    369

    Alfalfa is a crucial forage crop in Hungary, contributing to sustaining livestock feed and soil fertility management. To assess the dynamics of alfalfa crop production in the country, this study examines the variations and patterns in harvested area, total production, arable land area, and average yield of alfalfa over the previous three decades (1990 to 2024). Our findings reveal fluctuating patterns, with periods of increase and decrease in all parameters under study. While certain years exhibit growth due to favourable climatic conditions and improved agricultural practices, others show declines, potentially influenced by economic factors, changes in crop demand due to a decline in livestock production, and unfavourable climatic conditions, particularly drought. The analysis highlights the complication of alfalfa production trends, underscoring the need for expanding land area and adaptive strategies in Hungarian forage crop management to enhance alfalfa crop production to sustain livestock’s feeding system.