Search
Search Results
-
Assessment of Environmental Susceptibility/Vulnerability of Soils
62-74Views:100Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
Soil resources are threatened by the following environmental stresses:
– soil degradation processes;
– extreme moisture regime;
– nutrient stresses (deficiency or toxicity);
– environmental pollution.
Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
The efficient control of these processes necessitates the following consecutive steps:
• registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
• evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
• assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
• elaboration of efficient technologies for the „best” control alternatives (best management practice).
Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society. -
Examination of CO2 emission of different stubbles on a chernozem soil
53-59Views:95Applying alternative soil cultivation methods based on reduced disturbance of the soil more favourable conditions can be created in order to increase the organic matter content of the soil and the availability of the nutrients for the crops. In complex soil tillage experiment – in 1997 was set on – at Karcag, as the element of the investigation of soil reduced and conventional tillage systems. There is close correlation between the degree and intensity of CO2-emission from the soil and the structural state and organic matter content of the soil. In order to quantify the increased CO2-emission from soil due to soil preserving cultivation systems, in situ CO2-emission of soil was measured by means of an ANAGAS 98 infrared gas analyser. The soil type of the investigated plot is meadow chernozem solonetz in the deeper layers, a soil type that is characteristic
for the Trans-Tisza Region of Hungary. In this paper the results gained from the measurement on different stubbles are published, as we consider stubbles the most suitable state when the effects of different soil cultivation systems on the microbiological activity of the soil can be compared. Experimental data provided information about the length of the time period when CO2 emission increasing effects of soil cultivation are observable. Studying the effect of different soil cultivation methods on the CO2 emission from chernozem soil is indisputably actual and needs more efforts as it can contribute to develop a more environmental friendly agricultural production. The main goal of these measurements was to determine the effect of soil cultivation technologies and certain agrotechnical elements on the factors of the soil carbon cycle. -
Examination of the physical state of the soil under conventional and reduced tillage systems
183-186Views:166he effect of reduced and conventional tillage systems on soil compaction and moisture content in two years with extreme weather conditions is introduced in this paper. The investigations were carried out in a long-term soil cultivation experiment set on a heavy textured meadow chernozem soil at the Karcag Research Institute. In 2010 the amount of precipitation during the vegetation period of winter wheat was 623.3 mm, 2.2 times higher than the 50-year average, while in 2011 this value was 188.7 mm giving only 65% of the average. The examinations were made after harvest on stubbles on 4 test plots in 5 replications in the case of each tillage system. Soil compaction was characterised by penetration resistance values, while the actual soil moisture contents were determined by gravimetry. The values of penetration resistance and soil moisture content of the cultivated soil layer were better in the case of reduced tillage under extreme precipitation conditions. It could be established that regular application of deep soil loosening is essential due to the formation of the unfavourable compact soil layer under 30 cm. Conventional tillage resulted in enhanced compaction under the depth of ploughing, the penetration resistance can reach the value of 4 MPa under wet, while even 8 MPa under dry soil status.
-
The effect of nickel-contamination, nitrogen-supply and liming on the chemical composition of perennial ryegrass (Lolium perenne L.)
85-92Views:107Plant-production is determined by many production-factors. Each of these factors became subject of research-works through the years, still we state, that studying their interaction is even more important. For studying these interactions we set up a potexperiment, within that the direct effect and the interactions of four factors was inspected: soil, nitrogen-supply, nickel-loading and liming. Experiments were carried out on two soil types with extremely different characters: one was a chernozem soil with good fertility and buffering capacity, the other was a shifting sand soil with low humus-content and buffering capacity. Nitrogensupply and liming was added on two levels, while nickel on three within 12 combinations on each soil types. Plant production was cut two times within the vegetation period. The amount of production and dry matter was weighted, fractured and their element-content was measured by an ICP-detector.
Ca-content on the shifting sand soil was determined by all three factors, however the interaction between nickel-loading and liming was also significant. Nitrogen and liming increased Cauptake, that is due to appropriate nutrient-supply and improvement of a better pH-value. On the chernozem soil nitrogen and CaCO3 also increased the Ca-content. This is caused by a better nutrient supply and a higher amount of available Ca-ions.
On the shifting sand soil nickel content was increasing parallel to higher nitrogen-dosages. In presence of higher nickelamount the nickel-content of plants was also increasing, still according to liming, this increment was different. On the chernozem soil nitrogen a nickel increased Ni-uptake. However, liming also had a positive effect on Ni-content, that can be explained by the high amount on colloids in the soil, the adsorption of Ni-ions on them and in presence of liming material the replacement of Ca-and Ni-ions.
The potassium-content on the shifting sand soil was different in each liming-combination. In combinations without nickel the potassium-content of limed and not limed combinations was on the same level. In not limed combinations by adding nickel potassiumcontent was increasing, while in limed combinations no change was observed. On the chernozem soil by adding liming material the amount of uptaken potassium was decreasing, that is due to the antagonism between Ca- and K-ions. -
New approach in soil tillage – bases of the precision crop production
123-127Views:127A new approach is needed in soil tillage practice. The important achievements of this are the recognition of the risk – poor tillage practices, poor soil quality, soil state defects, and climate extremes etc. – the need for the development of risk reduction, prevention, remediation and maintenance of the favorable soil state. In this paper 13 main soil state defects are listed, to which the prevention and improving tasks are also commented. In the second part of the paper the most important soil tillage tasks are summarized in 30 sections and realization of these points may promote the implementation of precision plant production.
-
Soil biological challenges in our age
193-196Views:155The paper deals with the soil biological research and its contribution to the changed cropping strategy and to the sustainable and environmentally friendly farming and management. The paper emphasizes the importance of biodiversity, as one of the most important ecological functions of soil. The organisms, populations and communities living in the soil play a key importance in the preservation of soil fertility. The most important research areas are presented dealing with in the last decades the national researchers and the challenges we face regarding the current soil biological problems. We have to prepare to examine the soil biological effectiveness of the more widely spread bio-preparations, bacterium preparations, and bioregulators. The prerequisites are the versatile knowledge of the biological state of soils and monitoring examination of the different effects soils had (including the mentioned preparations).
-
CO2 emission of the soil on barley stubble
95-102Views:143In the last decades the physical and biological status of the soils in Hungary significantly decreased. The degree and intensity of CO2-production of the soil is in close correlation to its structural status and organic matter content. In a complex soil tillage experiment at Karcag in situ measurements have been carried out since 2002 in order to determine the CO2-emission of the soil. Carbon-dioxide emission of the soil in the cases of conventional tillage and reduced cultivation system was analysed in a long-term cultivation experiment. The measurements were carried out after the harvest of the barley, thus root respiration was excluded. For the spatial delimitation of the measuring area a newly developed frame+bowl set was used. Based on measurements, significant differences between cultivation systems can be recognized due to the soil structure changes and its effects
-
Energy crops on less favoured (alkaline) soil
115-118Views:122The reduction in fossil energy and row material sources induces growing demand for renewable resources. The growing demand for herbal raw materials has land use impacts as well. One way to reduce the conflict between the food and energy crops can be the utilization of less favored areas by growing energy crops. Among the potentially available areas for this purpose the salt affected soils (SAS) occupy a significant territories. SAS with structural B-horizon (meadow solonetz soils) represent the most wide spread group of SAS in Hungary. About half of these soils have been reclaimed and used as arable land and the remaining 50% are used as grassland. Sweet sorghum production for manufacturing of alcohol production was investigated in a long term amelioration and fertilization experiment on a salt affected soil (meadow solonetz). By means of regression analyzes the effect of sodium content of the soil and increasing mineral fertilizer doses were studied. According to the multiple regression analysis only the effect of nitrogen fertilizer was significant. On the solonetz type salt affected soil the effect of water soluble salt content of the soil was not significant, but there was a closer correlation between the ammonium-lactate sodium content and the yield of sweet sorghum. The maximum green mass was 45–50 t ha-1, in the case of low Na content and high level of nitrogen fertilization.
In order to quantify the potential yield of natural grass vegetation the relationship between the soil forming processes and the grass vegetation
was investigated. Beyond the different forms of Na-accumulation, the spatial pattern (mosaic-like characteristic) is also an inseparable feature of salt affected soils. The difference in the water regime, caused by the micro-relief is the main cause of variability. The run-on water keeps the deeper parts of the catena position wet longer. The wet situation causes more intensive leaching. In the low-laying parts of salt affected soils species preferring wet situations (mainly Alopecurus pratensis) are in majority. On the higher parts of the micro-relief species tolerating dry situations (mainly Festuca pseudovina) are dominant. The yearly grass production of low laying areas can be 4–7 t ha-1 but because of prolonged wet conditions the grass is not grazed and mowing can only be in old state. This old grass is not proper for feeding, but it may be suitable as energy plant. -
The effect of soil cultivation systems on organic matter distribution in different grain size fractions of the soil based on three years of experience
22-30Views:96Changes in the physical distribution (particle size and the state stability against decomposition) of the organic carbon pool in tilled layers of Hungarian field soil under different tillage treatments were studied. Three years after starting the experiment, soil samples were fractionated (they were taken in March 2005) by their particle size and density. The treatments caused well measurable, significant effects on two fractions of intra-microaggregate organic matter (53-250μm particle-sized, well and less decomposition-resistant pools) and onto their relative rate in the organic carbon pool of the whole soil.
Different tillage treatments caused different distributions in the organic matter fractions. In regularly intensely cultivated soils evolve different physical structure, particle size-distribution, which reduce the soil fertility and its resistance against outer impacts. -
Effect of agrotechnical factors on the activity of urease enzyme in a long term fertlization experiment
43-48Views:150The soil is a natural resource, the fertility preservation is an important part of the sustainable development. We have to monitor the transformation dinamics of the organic nitrogen-containing substances, to get accurate information about the changes of the nitrogen cycle in the soil.
Physical and chemical properties of the soil and the microorganism effect on the organic matter in the soil – in addition to the composition of organic matter. Wide variety of extracellular enzymes are present in this decomposition. These enzymes help in the transformation of the macromolecules to transforming low molecular weight compounds so they will be available during the assimilation.
The urease enzyme, catalyzes the hydrolysis of urea to CO2 and NH3. The urease is widely spread in the nature, it is present in the microorganisms, plants and animals.
We found that the soil moisture content, the rotation and the fertilization affect to the amount of urease in spring. Furthermore, we get significant difference between the irrigated and non irrigated samples in the second period of the year. Based on our results we can state that the activity of urease was higher in spring 2014.
The objective of our study was to present how the different agronomic factors affect on the activity of urease in a long term fertilizationexperiment.
-
Influence of phytophagous mammals environment-forming activity on the soil invertase fermentative activity in conditions of mining impact region
127-130Views:111Excretorial and fossorial activity of mammals is an important part of environment-forming activity. Mammals have influences on important biogeocenotic processes, especially on the soil processes. Determination the maintenance of soil invertase as one of diagnostic description the ecological state allowed defining limits of oscillation index in dump areas and in clean (control) native areas. The obtained results of the investigation indicate the soil depth, duration of experiment and type of area influence on soil invertase activity with the high statistical level of significance. Positive influence is revealed on invertase activity changing on dump areas, where an active excretorial and fossorial activity of phytophagous mammals was observed.
-
Changes in toxic elements content of soil after sewage sludge treatment in energy willow plantation
7-10Views:150The primary purpose of our experiment was the solution of municipal excess sludge treatment by a renewable energy resource used willow (Salix viminalis L.) plantation. Tests were carried out to state whether the applied sewage sludge has caused any accumulation of the toxic elements in the studied soil layers, and - based on the results –to see whether the plantation is suitable for the treatment of municipal sewage sludge.
The excess sludge (sludge before dewatering) is beneficial for the willow, because it contains a 3–5% dry matter and therefore, a lot of water, too. This high water content ensures the high water amount needed for the intensive growth of the willow. On the other hand, the wastewater treatment plant can save the dewatering cost which corresponds to about 30% of the water treatment process costs. The amounts of the sprinkled sewage sludge were calculated on the basis of its total nitrogen content. Treatments were the followings: control, 170 N kg ha-1 year-1 and 250 N kg ha-1 year-1. The mean values of the toxic element concentrations in the sewage sludge did not cross the permitted limits of the land accommodating.The measured toxic element values of the soil were compared to the limits of the 50/2001. (IV.3.) Government Regulation.The sprinkled sewage sludge on the bases of the total N content did not cause accumulation of heavy metals in the soil and the treated plants were also healthy without any signs of toxicity.
-
Experience at Russian State Agrarian University – Moscow Timiryazev Agricultural Academy on introduction and integration of precision agriculture technology
73-76Views:117Traditional and precision agriculture technologies are compared on the basis of the field experiment. Problems of soil and crop survey and mapping are discussed.
-
A tárolási feltételek hatása a kukorica Fusarium fertőzöttségére és toxin szennyezettségére
28-32Views:290Corn samples harvested in 1997, 1998 and 1999 from different soil types were stored at different conditions (temperature, moisture content, state of kernels) for six months. The Fusarium contamination was examined by plate dilution method and the amount of mycotoxins (F-2, T-2, HT-2, DON, DAS) were determined applying HPLC method immediately after harvesting and in the third and sixth month of storage. The aim of our study was to find correlation between the ecological factors, storage conditions and the examined parameters mentioned above, as well as to prove them statistically. According to the examinations carried out after harvesting we could state that the soil type had no effect on the parameters. Analysing the effect of the years we found considerable differences. The Fusarium infection of corn samples in 1998, while the toxin contamination in 1999 was the highest. The results of storage experiment show that year (number of microscopic fungi, F-2, T-2, HT-2, DAS and total toxin content) and moisture content of kernels (F-2, T-2, and total toxin content) have a significant effect on the examined parameters. We could prove the effect of temperature on the T-2 content (samples with natural moisture content) and DON content (samples with 14% moisture content). Higher values were found at higher temperature storage. The ratio of damaged kernels influenced the DON concentration in the non- wetted samples and the number of microscopic fungi in the wetted samples.
-
Development of technology elements for growing of perennial sorghum
15-17Views:137Optimal sowing time for perennial sorghum under irrigation is when soil temperature at the depth of sowing reaches up to 10–11 °С, harvesting for the green mass has to be done when panicle is situated on the stem in 10 sm from the flag leaf and hight of cut must be 11 sm.
-
The Impact of Water Supply on the Quality and Health of Potato
144-147Views:135Besides its effect on potato yield, water also has a significant impact on yield quality. Excess water (too much precipitation, over-irrigation) and the lack of water (lack of precipitation or irrigation) both trigger stress in the plant and can significantly worsen the quality of the yield (seed potato) and deteriorate the health of the plant and the seed potato. Excess precipitaton or irrigation water leaches nitrate-nitrogen under the rhizosphere, consequently, the amount of available nitrogen decreases leading to the deficiency of N in potato. If water cover (the maximally saturated state of soil) exceeds 8-12 hours, it can cause root destruction (because of the lack of oxygen), which leads to the wilting and later to the death of the plant. Abundance of water caused by excess precipitation or irrigation is a major problem primarily on sandy loam, loam and clay loam soils with bad structure and water management qualities, but also on any soils, which are over-irrigated or irrigated at an improper time. Symptoms of the lack of water are detectable mostly when the available water content of the soil (disponible water) decreases under 60-65%.
In the present year, there was a lack of precipitation on the Great Plain, which can be compensated by proper irrigation. Unfortunately, this problem is further intensified by the high temperature, which results in faster ripening and accompanied with fluctuating soil moisture content, in the formation of secondary tubers. -
The Effect of Forecrop and Plant Protection on the Pathology Parameters and Yields of Winter Wheat
84-89Views:113We carried out our experiment in the cropyears of 2000/2001, 2001/2002 and 2002/2003, on calcareous chernozem soil, at the experimental site of the Debrecen University Farm and Regional Research Institute, at Látókép. We examined the disease resistance and the yield quantity of Mv Magvas variety by adopting different forecrops and plant protection technologies, at 30+30 N level and at normal cereal row spacing. We applied two forecrops (wheat and pea) and two plant protection technologies (extensive and intensive). We measured the rate of infection by population survey in the first ten days of June.
In the course of our examinations, we found, that the rate of powdery mildew infection was higher in the thicker population sown after pea forecrop in all three years, as powdery mildew is not a typical cereal disease.
The infection rate of leaf mildew and DTR (Dreschlera tritici-repentis) was higher after wheat forecrop in all examined years, because these are typical wheat diseases and infection centres in the soil promote the spreading of these diseases. However, it was possible to parry the adverse effect of forecrops by intensive plant protection.
Due to the chernozem soil, wich has good water management features, and due to the good preparation of the seedbed, the effect of forecrops on yield quantity did not appear in the examined years. The quantity of the yield was only slightly larger after pea forecrop in the cropyears of 2000/2001 and 2002/2003 than after wheat. Nonetheless, the data of technical literatures state that the yield quantity can be larger, even by 15-20%, after pea forecrop.
In the course of intensive plant protection technology, we applied systemic pesticides, while in the course of environmentally sound technology, we used contact pesticides of sulphur content. In those populations that were treated with environmentally sound plant protection technology, infection rate was higher in all three years.
Yield quantities were somewhat lower in the course of applying extensive, environmentally sound technology, because diseases appeared in these populations to the higher degree. Powdery mildew does not, but leaf mildew and Dreschlera tritici-repentis have a significant yield decreasing effect. With appropriate, well-selected fungicides, we were able to keep every leaf diseases well in hand, and the rate of infection was almost independent of the influence of the breeding year. -
History of origin and development of replacement of plants crop rotations is in world agriculture
53-56Views:152In practice of world agriculture a long ago the known problem of decline of harvests of agricultural cultures at their permanent growing, scientific explanation of this phenomenon became possible only with appearance of natural sciences. At first the declines of harvests bound to the toxic action of root excretions cultures on her repeated sowing, with development of humus theory of feed of plants of diminishing of harvests at the permanent sowing began to explain impoverishment of soil on a humus.
During a few centuries the known farmers development the looks in relation to forming of scientific bases of construction of replacement of plants crop rotations in the world systems of agriculture, set history of their development and improvement. The analysis of influence of possibility of optimal satiation of replacement of plants crop rotations is conducted by agricultural cultures on the level of fertility of soil, water and nourishing modes and their productivity. For the terms of the insufficient moistening a positive action is marked black pair on the improvement of the water mode of soil in crop rotations.
In historiography the problem of introduction and mastering of replacement of plants crop rotations for the decision of scientific and practical tasks of agricultural production is represented in many-sided aspects, worked out and the recommended replacement of plants crop rotations that are base on zonal principle of development of world agriculture that passed the protracted term of test and counted on various specialization of economies. But for today development of scientific and technical progress requires intensification of agricultural production with the use of intensive crop rotations and growing of high-performance cultures.
Hereupon there was a necessity of realization of analysis of the systems of historical value of scientifically-practical knowledge about development and improvement of replacement of plants crop rotations, as it gives an opportunity to work out to recommending a production with the use of the most effective elements of the past on modern agrarian business and allows to forecast them on the future.
-
Untersuchungen mit 15N-Tracern in agrikulturchemischen Systemen
23-28Views:81Agricultural chemical states and processes are arranged in open and closed systems. Investigations of state are static systems independent of time, testing of process is dynamic systems dependent on time.
In order to follow up special facts and occurrences the stable isotope 15N is suited. It is demarcated of native nitrogen of existing systems.
In the report as well as results of experiments with 15N tracers in systems soil, fertilizer, plant and animal and too the path as brigde between soil and fertilizer, fertilizer and plant and soil and plant are represented. -
The phosphate state and biochemical mobilization of phosphorus compounds in arboreal plants’ soils
95-98Views:91Some indices of the phosphoric fractions of primery degraded soils, which are formed separate areas of technogenic landscapes, on a spoil-bank of iron-ore mine in the near of Kryvyi Rig, under act of lignosa, which are used for biological recultivation of degraded soils are investigated. Maintenance of mineral phosphates and features of organic phosphorus accumulation are set in soil under arboreal planting. Nutrient supply of plants is enhanced by mobile phosphates and their dynamics during vegetation period. Activity of alkaline and acid phosphatase enzymes are concerned also. On the basis of the soil enzymes activity information it is stated, that under the 35-years-old plantage of Robinia pseudoacacia L. the biochemical mineralization of organic phosphorus compounds passes considerably more actively than under Pinus pallasiana D.Don.
-
Current Conditions and Opportunities of Biofarming in Hungary
150-156Views:111The aim of organic farming is not to maximize income, but to achieve optimal product quality. It is completed by the tightest possible material, and energy flow within the farm. Organic agriculture significantly reduces external inputs by avoiding the use of chemo-synthetic fertilizers, pesticides and pharmaceuticals. Instead it works with nature to increase both agricultural yields and disease resistance. Total independence of external resources can not be achieved in Hungary due to the small-scale of organic animal husbandry. Some materials in limited quantities can be purchased from external resources, though the group of these materials is strictly regulated. Organic farming harmonizes with the concept of European multifunctional agriculture, because besides farming, it includes social considerations, as it helps to maintain natural resources and the relationship between people and their environment, and provides a living for those living in the region.
As regards organic farming the fertility of the soil and the health of vegetation can be influenced in various ways. Farmers have to be highly skilled and able to manage a farm with great expertise. Generally it can be stated that as the use of non-organically produced products is limited, the opportunities to correct failures made by the farmer are minimal, contrary to conventional farming. Farmers must be intent on developing the tightest material- and energy flow. This means that organic farms ideally have both animal husbandry and crop production. This energy and skill demanding system of farming is compensated by state subsidies, growing market share and relatively high prices for organic products. -
Environmental Conditions of the Berettyóújfalu Sub-Region
403-413Views:102The purpose of this paper is to introduce the environmental conditions of the Berettyóújfalu sub-region, which is geographically located in Hajdú-Bihar County. I specifically target the regions’ relief, soil and hydrogeological conditions, climate, flora and fauna, natural value and present nature conservation activities.
On the basis of my investigation of these points, I can state that although this sub-region has unfavorable soil conditions, polluted surface and subsurface waters, it is rich in thermal waters, nature reservations and wildlife. It’s disadvantageous characteristics can or should be amended, while the advantageous ones should be utilized by considering the principles of sustainability. At the end of this paper, I will make recommendations in connection with the latter point. -
Interactive evaluation of the main agrotechnical factors in rape production
71-79Views:132Our polifactorial rape research was carried out at Látókép Research Centre of Debreceni Egyetem AMTC, 15 km away from Debrecen. The aim was to study the unique effect and the interactive effect of more factors. The research factors were the following: cultivation, time of sowing and nutrient supply. Soil moisture datas proved unambiguously that increasing amounts of chemical fertilizer raise the water consumption of rape, lack of water in fertilized plots were always bigger then the water deficit in control plots. The highest amount of water deficit was experienced in the case of arable plots. However, increasing amounts of chemical fertilizers raised the amount of yield proportionately. We experienced yield depression only in the case of arable plots at the highest level of chemical fertilization. In polifactorial rape research sowing of 24th August 2007 of 2007/2008 was the most optimal in point of the amount of yield. This is most-significant in the case of loosening tillage and disking tillage plots, while the plots of ploughing lag behind those two in point of average yield. We experienced the biggest differences of yield in the case of different tillage plots of sowing on 24t August 2007. Still not even the plot with the highest average reached the limit of 4 tons, which can be attributed to high rate of lodging and the harvest loss caused by this. The biggest amount of yield was experienced in the case of sowing of 24th August 2007, with the highest level of chemical fertilization at loosening tillage plot (3930 kg/ha). We can observe big differences between the tillage methods; plots of loosening show a much better average yield then plots of disking and ploughing tillage. Considering the first observed crop year we can state that alternative tillage methods do have a future in rape growing of Hungary.
-
The impact of production methods and row orientation on carrot quality in the case of various cultivars
65-69Views:155Carrot is a wellknown and favoured, really important vegetable. Carrot’s cultivation is important, although its growing field has been reduced in last few years. The suitable cultivar and landstructure are essential to produce good quality carrot. The ridge cultivation is widely spread on plasted soils. At this type of cultivation relationship between line orientations and carrot quality is less studied. That is the reason we tried to examine in our experiment the relationship between ridge highness and line orientation (N-S and E-W) and carrot’s morphological features at different genotipes. The experimental was settled in the Experimental Garden of the University of Debrecen on limy chernozem soil by plain, raised bed and ridge cultivation in 2013. In the experiment we examined four longgrowing cultivars (Danvers 126, Fertődi vörös, Rekord, Chantenay). The sowing was at 24th April. The harvest was at 15th October, 2013. In the multi factorial (type of cultivation, line orientation, cultivar) experimental we explained the effect of treatments on carrot root shoulder diameter and root weight.
In our experiment we stated that line orientation had no significant effect on shoulder diameter at different cultivations. The only exception is Fertődi vörös which has reached the biggest shoulder diameter (5 cm <) at N-S direction on raised bed. By examining the carrot rootweight we stated that they were higher in raised bed and ridge cultivation than in plain cultivation with the exception of one cultivar (Chantenay). This carrot had found ideal environment for growing between each cultivation conditions. That is why we can state that if you grow carrot on plasted soil and there is no possibility to make a ridge, use short, tapered and rounded ending root type for successful growing.
-
Evaluation of mineral element content of beetroot during the different stages of the growing season
459-469Views:292In modern nutrition, bioactive materials of different vegetables are especially important to be researched. The experiment was carried out on March 30, 2016 (sowing date). Mineral element content (B, Ca, Cu, Fe, K, Mg, Na, P, S, Zn) was evaluated on the 60th, 85th and the 105th day of the vegetation period. The data are presented as the mean of five varieties which can give the real state of these parameters of beetroot grown on lowland chernozem soil.
In the young beetroot leaves (60 days) the mineral element content was higher than in the older ones (85 days). The calcium and magnesium content of the leaves was much more favourable (10 times higher) than in the root. The potassium content of leaves has reached the amount of 5000 mg kg-1, but at the same time more than 3000 mg kg-1 was detected in the improved root. This value is favourable for the potassium supply of the human organism.
The sulphur content (1300 mg kg-1) of the leaves was the highest on the 85th day of vegetation period. Similar tendency was detected for boron content (2.45 mg kg-1), while for iron content it was higher (28.23 mg kg-1) in the younger leaves (60 days).
Finally, it can be concluded that the increased element content of beetroot leaves will be a favourable source of mineral element supply of the human organism.