Search
Search Results
-
Productivity and Nutrient Reaction of Maize Hybrids
78-83Views:97Several factors influence the quantity and stability of maize yield, the most important being the nutrient supply, the hybrid and precipitation. In 2004, during the maize growing season the precipitation was more than the 30 year’s average, with 68.3 mm, but the distribution was unfavorable. The experiment was carried out in Debrecen at the Experimental Station of the University of Debrecen Centre of Agricultural Sciences, Department of Crop Production and Applied Ecology. We tested 10 various hybrids with their own genetic characteristics for five different fertilizer doses, in addition to the parcels without fertilization.
The favorable results reached were due to the rainy season. The average yield varied between 7.78-9.67 tha-1. The DK 440, PR37M34, PR38A24, PR39D81 and PR36R10 of the hybrids reacted to higher fertilizer doses with significant growth yields, the yield (more than 11 tha-1) was the highest for N200, P125, K150 fertilizing. The other hybrids, DKC 5211, Mv Vilma and MV Maraton, gave similar results at the N120+PK fertilizer dose and the ensuing doses depressed the yield. Fertilization was more effective thanks to the precipitation. The fourth and fifth dose increased or decreased maize yield depending on the nutrient reaction of the hybrid. The agro-ecological optimum of NPK fertilization was N120, P75, K90 kgha-1.
During the experiment we tested the moisture loss of five hybrids. The rainy crop year’s effect on the seed moisture content at harvest was higher than in previous years. The seed moisture content hybrids at harvest which have shorter crop years (FAO 300) was 18-19%, and hybrids with longer vegetation periods had more than 20% seed moisture content. DK 440 hybrid had the intensive moisture loss of the five hybrids, at the start of the measurement, the seed moisture content was higher than 40%, and it decreased to 18.6% by harvesting. -
Effect of soil-compost proportion on the abiotic and biotic parameters of soilplant system
99-104Views:132The environmental awareness, coming to the front in the 21st century, motivates us to supply the plant nutrient demand (in point of the plant, the environment and the human health) with natural materials.
Composting is known since the beginning of civilization. We came to know more the processes of composting as a result of last decades’ research, but numerous unexplained questions remained up to this day. The good compost is dark gray or brown, and it should not create an odor. It has aggregate structure, and it’s pH is neutral. Compost is soil-like (Fehér, 2001), nutrient-rich material, which contains valuable nutrients extracted from soil, so if we recycle this, we can decrease the chemical fertilizer and other (example: mineral energy) expenses.
The reason of that we chose the more accurate cognition of compost utilization is to do more effective the site-specific nutrient supply. This increases the average yield and the quality of yield. Besides we can decrease the harmful effects, which endanger the plant, the environment, and the human body.
During the compost utilization experiment we blended the acid sandy soil with compost in 4 different volumetric proportions (5 treatments) than we set the pots randomized. The advantage of this method is that we can provide equal conditions for plants so we can measure the effect of treatments correctly. Our experimental plant was ryegrass (Lolium perenne L.), that grows rapidly, tolerates the glasshouse conditions, and indicates the effect of treatments well. After the harvest of ryegrass we measured the fresh and dry weight of harvested leaves and the total C-, N-, S-content of the dry matter and of the soil, we examined the pH and the salt concentration of soil as well.
Our aim was to study and evaluate the relations between the compost-soil proportion and the nutrient content of soil and plant. In our previous experiments we confirmed (based on variance analyses) that the compost has a beneficial effect on soil and increases the nutrient content of the soil (Szabó, 2009). But it’s important to appoint that the compound of compost is seasonally change: in winter the selective gathered municipal solid waste contains salt that were applied for non-skidding of roads, but salt has a negative effect to the plant. We proved that in our experiment the 25/75% compost/soil proportion was ideal for the plant. This content of compost effected 6 times higher green matter weight compared to the 100% sandy soil. -
Correlation between the weather in 2017 and the productivity of maize
89-93Views:181In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize. The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2; therefore, this experiment was half-industrial. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. The yield increasing effect of the fertilizer also depended on the number of plants per hectare to a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants ha-1.In Hajdúszoboszló in 2017, up to October, 445.8 mm of rain fell, which is in line with the average values of 30 years, and is only 45.7 mm less than those. In 2017, the effect of increasing the plant number was slighter. Averaged over the observed fertilizer treatments and hybrids, the yield was 9.10 t ha-1 with 60 thousand plants ha-1, 9.11 t ha-1 with 70 thousand plants ha-1 and 9.12 t ha-1 with 80 thousand plants ha-1. Without fertilization, in most cases, increasing the plant number from 60 thousand plants ha-1 to 70-80 thousand plants ha-1 does not increased the yield but decreased it. With N80+PK treatment the yield changed between 8.90 and 11.27 t ha-1. The effect of increasing the plant number was just slightly observable and did not show a clear tendency. The effect of changing the plant number, even with the highest dosage of fertilizers, could not be detected adequately. In contrast with the plant number, the effect of the different fertilizer treatments was expressly traceable. Compared to the control treatment (treatment without fertilization), with N80+PK fertilizer dosage with 60 thousand plants ha-1 the yield increased by 3.36–4.99 t ha-1. The smallest demonstrable proof, i.e. the LSD5% was 0.22 t ha-1, which means that fertilization, in each case, significantly increased the yield. When analysing the effect of fertilization in the average of the hybrids and the different plant numbers, a yield of 5.61 t ha-1 could be detected, which value was 10.12 t ha-1 with N80+PK treatment and 11.61 t ha-1 with N160+PK treatment. Thus, it can be calculated that compared to the treatment without fertilization, the N80+PK treatment increased the yield by 4.51 t ha-1, while compared to the N80+PK treatment, the N160+PK treatment increased the yield by 1.49 t ha-1. In addition to agrotechnical factors, in maize production, the impact of the crop year is specifically of high importance.The average yield of hybrids (in the average of the different fertilizer treatments) was 6.81 t ha-1 in 2015, 11.86 t ha-1 in 2016 and 9.11 t ha-1 in 2017. When comparing the yield results against the precipitation data, it is clearly visible that the amount of rain fell in the January– October period is directly proportional to the average yield of maize. The effect of the crop year can be defined in a 5.05 t ha-1 difference in the yield. -
Comparative examination of a bacterium preparation (BACTOFIL® A10) and an artificial fertilizer [CA(NO3)2] on calcareous chernozem soil
75-80Views:134In a small-pot experiment a bacterium preparation, Bactofil® A10 and an artificial fertilizer containing Ca(NO3)2 in different dosages were studied on calcareous chernozem soil, concerning the readily available nutrient content of soil (nitrate-nitrogen, AL-phosphorus, ALpotassium content of soil, some soil microbial characteristics (total number of bacteria and fungi, cellulose-decomposing and nitrifying bacteria, CO2-production of soil), and the amount of the plant biomass.
The readily available nutrient content of the calcareous chernozem soil increased due to the treatments, except for the change in the soil nitrate-nitrogen content, which did not measure up to the control due to the effect of high-dosage Bactofil.
The treatments also influenced the examined microbial characteristics of the soil positively. The artificial treatments significantly increased the total number of bacteria and the number of cellulose-decomposing and nitrifying bacteria. The low-dosage Bactofil significantly increased the number of cellulose-decomposing bacteria and both Bactofil dosage significantly increased the number of nitrifying bacteria. The measure of the soil respiration grew in all treatments, but significantly only in Ca(NO3)2 fertiliser treatments.
The quantity of the plant biomass was grew in a low-dosage Bactofil and significantly in the artificial fertiliser treatments. The highest plant biomass quantity was measured in the high-dosage artificial fertiliser treatment.
In the correlation analyses we found some medium positive correlation between the soil chemical, microbiological parameters examined, and the plant biomass in the case of both treatment-forms.
Based on our results Ca(NO3)2 artificial fertiliser treatments on calcareous chernozem soil proved to be more stimulating regarding the
examined soil characteristics and the amount of the plant biomass, but the low-dosage Bactofil also positively influenced the majority of the
soil characteristics examined in terms of nutrient supply. -
The effect of and interaction between the biological bases and the agrotechnical factors on maize yield
83-87Views:167The effect of and interaction between the biological bases and the agrotechnical factors on maize yield In our research, we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize. The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2; therefore, this experiment was half-industrial. We tested six hybrids with different genetic characteristics and growing seasons.We analysed the correlation between the nutrient supply and the yield of maize hybrids with a control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. The yield increasing effect of the fertilizer also depended on the number of plants per hectare to a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants ha-1.In 2015, the highest yield was produced by hybrid P9241 with N80+PK and 70 thousand plants per hectare. With the N160+PK fertilizer dosage, the same hybrid responded the best, followed by hybrids P9486 and DKC4717. Using the same fertilizer treatment, the 80 thousand plants per hectare population density resulted in decrease in the yield with most of the examined hybrids. In 2016, with the increase in the number of plants per hectare, even with non-fertilised treatment (control treatment), the yield could be increased in the case of each hybrid.Averaged over the different hybrids and fertilizer treatments, applying 80 thousand plants ha-1 instead of 60 thousand resulted in 1.0 ha-1 yield increase. In 2017, the number of plants had a slighter effect. With N160+PK treatment, in most cases no significant difference can be observed. The value of LSD5%: plant number: 0.20 t ha-1, hybrid: 0.28 t ha-1, interaction: 0.48 t ha-1. With N160+PK treatment, the hybrids produced yields between 10.07 and 12.45 t ha-1. When examining the three years in the average of the number of plants, with treatment without fertilisation, the average yield of hybrids reached 7.53 t ha-1. With N80+PK treatment, this value was 9.71 t ha-1 and with doubling the fertilizer dosage, this value increased to 10.42 t ha-1. No economic profit was gained as a result of applying double dosage of fertilizer; therefore, the N80+PK dosage can be considered ideal. -
Investigation of the production parameters, nutrient and mineral composition of mealworm (Tenebrio molitor) larvae grown on different substrates
129-133Views:277During the rearing of mealworm (Tenebrio molitor) larvae, the optimisation of the growing substrate has a particular importance. The application of the appropriate substrate is a fundamental pillar for intensive and safe production. The requirements for substrate include the lack of toxins, high nutrient and micro-macro element content. The aim of this study was the evaluation of the effects of different substrates on the production parameters, nutrient and mineral composition of the mealworm larvae. The experiment lasted through 14 days. 5 treatments were set up at, where the variable was the substrate. The test system consisted of 25 units (5 treatments and 5 replicates). 10 mealworm larvae per unit, (total of 250 larvae) were used at the beginning of the experiment. Regarding the substrates, our study included sweet potato (SP), may turnip tuber (MT) and may turnip leaf (ML). In addition to the plant by-products, wheat flour (WF) and wheat semolina (WS) were used as control substrates. Trace element uptake and production parameters of the larvae were determined at the end of the experiment. Regarding the production parameters, it can be stated that the wheat semolina (0.081 ± 0.005 g) and wheat flour (0.069 ± 0.007 g) substrate used as control gave the best results for the final body weight. In terms of plant raw materials and by-products, sweet potatoes (0.063 ± 0.007) can only be recommended as substrate, while may turnip tuber and may turnip leaf produced significantly lower final body weight results (MT=0.034 ± 0.002 g ; ML= 0.036 ± 0.002 g). The nutrient composition of the larvae was not affected by the substrate, these results confirmed the high protein and fat content reported in the literature. The results with the production parameters were contradicted by the micronutrient content. Larvae reared on may turnip leaf (ML) and tuber (MT) showed the highest values for most of the macro- and microelements (potassium, calcium, magnesium, iron, zinc, copper) tested.
-
Nutrient Uptake of Miscanthus in vitro Cultures
23-24Views:91The large biomass production and the low necessary input fertilizer make Miscanthus an interesting, potential non-food crop with broad applications, e.g. for fuel and energy, for thatching, fiber production, for the paper and car industries, as well as for ethanol production.
Axillary buds of Miscanthus x giganteus were placed on a shoot inducing nutrient solution (modified Murashige and Skoog, 1962), basic medium supplemented with 0,3 mg l-1 6-Benzylaminopurin. After 40 days of culturing, the axillary buds produced three times more shoots than could normally be harvested. The nutrient content (N, P, K, Ca, Mg) was measured several times during culturing. The results showed that, after 35 days, nitrogen and phosphate were nearly completely taken up. From that time, shoot growth was not observed.
After shoot propagation, the plants were transfered into a nutrient solution for root formation (modified Murashige and Skoog, 1962), basic medium supplemented with 0,5 mg l-1 Indole- 3-Butyric acid, and could be potted in soil after about 14 days. -
The effect of NPK fertilization and the number of plants on the yield of maize hybrids with different genetic base in half-industrial experiment
103-108Views:211In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize.
The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2, this it was a halfindustrial experiment. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. Yield increasing effect of the fertilizer also depended on the number of plants per hectare at a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants/ha.
In Hajdúszoboszló, in 2015 the amount of rainfall from January to October was 340.3 mm, which was less than the average of 30 years by 105.5 mm. This year was not only draughty but it was also extremely hot, as the average temperature was higher by 1.7 °C than the average of 30 years. In the critical months of the growing season the distribution of precipitation was unfavourable for maize: in June the amount of rainfall was less by 31mm and in July by 42 mm than the average of many years.
Unfavourable effects of the weather of year 2015 were reflected also by our experimental data. The yield of hybrids without fertilization changed between 5.28–7.13 t ha-1 depending on the number of plants.
It can be associated also with the unfavourable crop year that the yield of the six tested hybrids is 6.33 t ha-1 in the average of the stand density of 60, 70 and 80 thousand plants per hectare without fertilization, while it is 7.14 t ha-1 with N80+PK fertilizer treatment. That increase in the yield is only 0.81 t ha-1, but it is significant. Due to the especially draughty weather the yield increasing effect of fertilizers was moderate. In the average of the hybrids and the number of plants, increasing the N80+PK treatment to N160+PK, the yield did not increase but decreased, which is explicable by the water scarcity in the period of flowering, fertilization and grain filling.
The agroecological optimum of fertilization was N 80, P2O5 60 and K2O 70 kg ha-1. Due to the intense water scarcity, increased fertilization caused decrease in the yield. As for the number of plants, 70 000 plants ha-1 proved to be the optimum, and the further increase of the number of plants caused decrease in the yield.
-
The effects of agrotechnological factors on winter wheat yield in humid cropyear
162-167Views:129The effects of crop rotation, nutrien supply and crop protection technologies, as well as the appearance of the main ear- and leafdiseases
(powdery mildew, helminthosporium leaf spot, leaf rust, fusarium) were studied on the crop yields of winter wheat variety MV
Pálma during the 2009/2010 crop year. The experiments were conducted in triculture (pea – wheat – corn) and biculture (wheat – corn), at
five nutrition levels, with the use of three crop protection technologies (extensive, conventional and intensive) at the Látókép Research Site of
the University of Debrecen, Centre of Agricultural Sciences. Our results proved that the appearance of leaf- and ear-diseases were
significant in the wheat cultures during the 2009/2010 crop year, because of the rainy, warmer than usual weather, the lodging, and the huge
vegetative mass developed. The most severe infections by the four examined diseases after pea and corn pre-crops were observed at
extensive crop protection levels, when fertilizers were used at the highest dose.
Following corn pre-crop, in the case of all the three crop protection technologies the maximum rate of wheat yield results were achieved
at N150+PK level. The highest yield was reached at intensive crop protection level (6079 kg ha-1). In triculture, in case of all the three crop
protection technologies the maximum yields were achieved at N50+PK level; in extensive technology 5041 kg·ha-1 yield, in conventional
technology 6190 kg ha-1 yield was realised, while in the intensive technological model the yield was 7228 kg ha-1.
The relationship between yield and fertilizer amounts, the rate of pathogen contaminations, crop protection technologies and pre-crops
was defined with correlation analysis in case of different crop rotations during the 2009/2010 crop year. Based on the results of the
experiment, we found that in stands after corn pre-crop strong positive correlation was established between the crop protection level and the
crop yield (0.543), the nutrient levels and the emergence of the four examined pathogens, and between the nutrient levels and the yield
(0.639). Extremly strong positive correlation was observed between crop protection and yield (0.843) in triculture. Strong positive
correlation was detected between the nutrient levels and the presence of the four examined pathogens, as well as between nutrient and
lodging (0.688). Strong negative correlation was between the crop protection level and the four examined diseases both in biculture and
triculture. -
Changes of some soil chemical and microbiological characteristics in a long-term fertilization experiment in Hungary
253-265Views:330Agricultural management practices – directly or indirectly – influence soil properties.
Fertilization rates and crop rotation can strongly affect soil pH, soil nutrient supply and soil organic matter content due to the changes of microbial processes. The objective of this study was to compare the effects of different fertilization doses in monoculture and tri-culture of maize (monoculture: only maize grown since 1983, tri-culture: it is a three-year crop rotation system: pea – winter wheat – maize) on selected soil characteristics. The long-term fertilization experiments were set up in 1983 in Eastern Hungary. These experiments are situated west of Debrecen in Hajdúság loess region, on calcareous chernozem (according to WRB: Chernozems).
The test plant was maize (Zea mays L.). One-one pilot blocks were selected from monoculture and tri-culture of the long-term experiments. The observed soil samples were taken in the 30th year of the experiment, in 2013. The doses of NPK fertilizers increased parallel together, so the effects of N-, P- and K-fertilizers cannot be separated.
With the increasing fertilizer doses, the soil pH has decreased in both crop production systems and, in parallel, the hydrolytic acidity has significantly increased. A close negative correlation was proved between the pHH2O, pHKCl and hydrolytic acidity. An increased nutrient content in soil was recorded in every NPK treatment and the available phosphorus and nitrate content increased in higher proportion than that of potassium. Of the measured parameters of C-and N-cycles, fertilization has mostly had a positive effect on the microbial activity of soils. Besides the effects of fertilizer doses, correlation were looked for between soil microbiological properties. Evaluating the ratios among the measured parameters (organic carbon and microbial biomass carbon, OC/MBC ratio; carbon-dioxide and microbial biomass carbon; CO2/MBC proportion), the fertilization rate seems to be favoured by the increase of amounts of organic compounds
-
Production technology development of millet at different ecological conditions
63-67Views:167The millet is a very special plant with good adaptation that gives the possibility for the late sowing and secondary production. However the effects of late sowing modifies the efficiency of the agrotechnological elements. The exainations – focused on this aspect – was conducted in the DU RINY and DU RIK in small plots in four replications in 2014. Among the examined factors (sowing time, nutrient supply, growing area) sowing time had the largest effect. The effectiveness of the agrotechnological elements decreases under unfavourable circumstances caused by the late sowing.
The agrotechnical elements modifies the yields in the examined genotype. Sowing time had the biggest effect on the yields of millet. The genotype „Maxi” had the highest yield in the different treatment variations.
The yield differences were significant between the sowing time and plant density variations, but the nutrient supply had not significant effect (the rate of precipitation was unfavourable in 2014 season).
-
Effects of different groundcover matters on nutrient availability in an integrated apple orchard in Eastern-Hungary
21-25Views:116The aim of our study is to examine the effects of different groundcover methods on nutrient availability and uptake of apple orchard. The
experiment was carried out at the orchard of TEDEJ Rt. at Hajdúnánás-Tedej, in Eastern Hungary. The orchard was set up on lowland chernozem soil in the Nyírség region. It was established in the autumn of 1999, using Idared cultivar grafted on MM106 rootstocks at a spacing of 3.8 x 1.1 m.
The applied treatments were divided into two groups according to origins and effects. On the one hand, different livestock manures (cow,
horse and pig), on the other hand different mulch-matters (straw, pine bark mulch, black foil) were used. The different manures and mulches
were applied on the surface to test the effectiveness of these materials.
The effectiveness of manure treatments was higher than the other treatments on AL soluble P content of soil. Mostly the manure treatments
increased the AL soluble K of soil. Our all treatments increased 0.01 M CaCl2 soluble NO3 - -N content of the examined soil layers. The effect
of manure treatments was the highest. From the results it was evident that the amount of easily soluble organic nitrogen fraction distributed
more homogeneously than the other mineral N fractions examined.
Our results can be summarized as follows:
1. Our results pointed out that the used ground covering matters divided into several categories regarding its effect.
2. The available N, P and K contents of soil were mostly increased by applying manures.
3. The effectiveness of straw, mulch and mostly black foil was lower.
4. Differences were found between nutrient supplying treatments and the treatments which did not supply nutrients. -
Hybrid-specific nutrient and water use of maize on chernozem soil
51-54Views:130The field research was set up on chernozem soil at the Látókép AGTC KIT research area of the University of Debrecen. The study focused on yield, water utilization, nutrient reaction and the amount of yield per kg fertilizer of corn hybrid NX 47279 in 2011 and 2012. Based on the yield results it can be concluded that the largest yield in 2011 was 15 963 kg ha-1 at level N120+PK, while in 2012, the maximum yield amounted to 14 972 kg ha-1 at level N90+PK. Surplus yield per kg fertilizer proved that in 2011 level N30+PK resulted in the highest surplus yield (42.3 kg kg-1) compared to the control treatment. In 2012, yield growth was 18.0 kg kg-1 compared to the control treatment. We measured at level N60+PK 17,5 kg kg-1 compared to at level N30+PK, at the N90+PK 17,7 kg kg-1 compared to at level N60+PK. level N30+PK kg kg-1, 17.5 kg kg-1 at level N60+PK and 17.7 kg kg-1 at level N90+PK compared to the control treatment.
Results of the regression analysis showed that the amount of nitrogen fertilizer was 117 kg ha-1 in 2011 and 111 kg ha-1 in 2012 in order to reach maximum yield. Doses of fertilizers above the amounts previously mentioned resulted in yield decrease. Our results indicated that in the drought year of 2012 the hybrid used available water more efficiently than in 2011. The hybrid produced 59 kg ha-1 yield in 2012 and 51.9 kg ha-1 in 2011 at an optimum nutrition level.
-
The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
143-147Views:186In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.
Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.
The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.
In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.
The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.
However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.
As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.
-
The effect of various composts on vegetable green mass on two soil types
179-183Views:180Composting of sewage sludges makes easier the utilization of sewage sludge in the agriculture and the composts in good quality could increase the nutrient content of soil. Due to the composting process, the sewage sludge composts with high organic matter content can be utilized in the same way as other composts or farmyard manure.
Composts produced in different ways have different effects on the physical, chemical and biological properties of different soils, although their positive effects have already proved in the literature. In our study the effects of composts from different composting processes were investigated in soil-plant systems. The different physical and chemical properties of the two examined soil types (arenosol and chernozem)strongly influenced the nutrient supply capacity of composts which could be characterized by the growth of ray-grass as a test plant in the pot experiment. In this work we examined the effects of three different composts on the green weight of plants on the fourth and eighth weeks after the treatment and sowing. -
The impacts of spring basal and side dressing on maize yield
83-86Views:200The yield potential of maize is very high. According to Tollenaar (1983), maize yield potential is as high as 25 t ha-1 (absolute dry yield) which is the highest among all cereals. In order to fully utilise this high yield potential, proper nutrient replenishment is of chief importance among all agrotechnical factors.
The aim of research was to examine the effect of nitrogen fertiliser applied as basal and side dressing on maize yield.
The measurements were performed at the Látókép experiment site (47° 33’ N, 21° 26’ E, 111 m asl) of the Centre for Agricultural Sciences of the University of Debrecen on mid-heavy calcareous chernozem soil with deep humus layer in an established experiment in 2011, 2012 and 2013. The trial design was split-split-plot with two replications.
Based on the experiment results, it can be established that the nutrient uptake of maize is greatly dependent on the amount of water store in the soil. From the aspect of the development of the maize plant and water supply, the most determinant factor was the distribution of precipitation over the growing season and not the amount precipitation. This is shown by the fact there was only 276 mm precipitation – which was favourably distributed – in 2012 to increase the availability of nutrients and the main average was the highest in this year (14.394 t ha-1).
Spring basal dressing helped maize development in all three years even on chernozem soil which is well supplied with nutrients. Although the effect of side dressing did not result in any yield increase, it could still contribute to mitigating the stress effects caused by environmental factors. Altogether, nutrient supply adapted to the various development stages of maize can favourably affect the success of maize production.
-
Evaluation of the yield and baking quality of winter wheat (Triticum aestivum L.) varieties in different cropyears
95-100Views:119We have investigated the effect of the cropyear, the genotype, the nutrient supply and their interactions on the yield and the quality parameters of three different winter wheat genotypes in three different cropyears. The most disadvantageous influence on the yield averages was caused by the moist weather of 2010, when yield results fell behind the mean of the two other examined years and the nutrient optimum was around low doses. The optimal cropyear turned out to be the ordinary 2011, the best yield results were experienced during this cropyear. Although the drier periods in 2012 decreased the yield values, the varieties could realize high yield maximum values. Considering the yield results, Genius turned out to be the best variety. In respect of the quality traits, 2010 turned out to be the best cropyear in case of all the three varieties. Despite the dry weather of the spring of 2012, the precipitation fell during flowering and ripening phases had positive impact on the grain-filling processes and contributed to the development of better quality. As a consequence of the significantly lower amount of precipitation during the generative phenological phases, the worst quality parameters were realized by the varieties in 2011.
In respect of crop year effect, 2010 was unfavourable for the amount of yield, but the most beneficial for the quality. 2011 was the most advantageous for the yield amounts but disadvantageous for the quality parameters. Although in 2012 extreme crop year effects were experienced after each other (dry and warm spring, moist and warm summer), the yield average and quality trait values were close to the yield averages of 2011 and quality parameters of 2010. Analyzing our results we can state that the average crop year was favourable rather for the yield. The appropriate amount of precipitation during the whole 2010 and that during the generative phenophases in 2012 favoured the development of good quality.
Consequently, the appropriate amount of precipitation is essential for the development of good quality during the grain-filling period. The negative crop year effects were only compensated but not eliminated by the good nutrient supply. Genius achieved excellent yield averages but performed worse quality parameters than Mv Toldi, whose quality parameters were outstanding but the yield averages fell slightly behind those of Genius. Considering the yield results, the variety Genius turned out to be the best, while Mv Toldi was the best in quality.
-
Testing laboratory parameters of compost tea
31-36Views:491During the industrial production of broiler chicken, a large amount of manure is produced, of which easily contained nitrogen content (without pre-treatment) is released into the atmosphere as an air pollutant. In our experiments, we aimed to prepare compost tea, also known as water extract of compost, from pre-treated poultry manure in order to create a product can be utilized as liquid nutrient supply. The poultry manure source was the Baromfi-Coop Ltd. located in Nyírjákó, Hungary, where it was treated by composting. As a result of this pre-treatment of the poultry manure, its nutrient parameters improve and nitrogen is present in a form that is better utilized for plants. Furthermore, this product is suitable for further utilization and also can be the base material for a brand-new product. For this reason the effects of compost/water ratio, incubation time, low oxygen level, and extraction time on the parameters of the resulted product were studied in the frame of developing new soil-life enhancing microbial product, so-called compost tea.
Chemical parameters of the compost used as base material strongly determined the properties of the resulted compost tea, especially the ratio of the various nitrogen forms, their concentration and the salt content. It was found that adding water at a higher rate that means 1/40 and 1/50 mixing ratios results in more cost-effective production. In the experiment the compost tea were held under oxygen-poor conditions, therefore pH of the extractions decreased, which influenced the quality and quantity of their nutrient content.
-
Microbiological preparations affecting the soil nutrient availability and growth of ryegrass in a pot experiment
49-53Views:152The effects of different bacterial fertilizers and their combinations with NPK fertilizer and wheat straw were investigated on some soil properties (chemical parameters) and on the biomass production of testplant. The applied quantities of the bacterial fertilizers were the double of the recommended dose. The experiment was set up in 2013 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. Calcareous chernozem soil; originating from Debrecen (Látókép) was used with ryegrass (Lolium perenne L.) test plant. At the end of the experiment (after 8 week) the samples of soil and plants were determined for nitrate-nitrogen, ALsoluble phosphorus and potassium content of soil, the weight of green biomass of ryegrass per pot, the dry matter and moisture content of ryegrass. Straw treatment resulted better water and available nutrient content of soil in general. Inoculation however was not improving the biomass production over the fertilizer treatment. Interrelation with the recommended dose could be further studied.
-
The purple coneflower’s (Echinacea purpurea L.) nutrient requirements investigation in a small plot trial
95-99Views:166During our research, we investigated the purple coneflower's (Echinacea purpurea L.) drug yield and drying loss change with different fertilization settings in a small-plot trial. We measured the raw and dry drug yield, which we harvested in 2016 and in 2017, as well as the drying loss of these yields. Harvest and all other works were performed manually. We dried the harvested herba under prenumbra for three weeks. Based on the obtained data, every fertilization settings’ yield was less than that of the control plots in 2016. We measured the highest drying loss in relation to the N60P80K120 supply in this year. In 2017, we measured the highest yield data in the N75P100K150 fertilization setting.We made single-factor variance analysis to investigate the connection between the quantity of the raw, the dried herba, the drying loss and the different nutrient settings -
The examination of the marigold’s (Calendula officinalis L.) nutrient requirement in small-plot trial
61-66Views:186During our research we investigated the marigold's (Calendula officinalis L.) nutrient requirements with different fertilization treatments in small-plot trial. We measured the harvested marigold's drug's raw and dry weight on a weekly basis from July 6th until August 17th. We were using SPME (Solid phase microextraction) and GC-MS (gas chromatograph-mass spectrometer) to examined the effects of the different fertilization settings for the herb's main active ingredients of essential oil's percentage.
It was concluded, based on the results, the N30P40K60 fertilization setting is ideal in terms of the quantity of the marigold drug. Both the raw and the dry weights' measurements of the case, this fertilization setting have the most important effect on the herb's yield. The analysis of variance didn't show significant differences between the plots with different fertilization settings. We discovered relationship between the drying loss and the increasing quantities of nutrients. We think it may be possible the Alpha-thujon's and Alpha-cadinol's production and the drying loss's data are connected, which appear to confirm the N15P20K30 treatment's data.
-
The effect of long-term fertilization on the 0.01 M CaCl2 extractable nutrient content of a meadow soil
73-79Views:104During my research, I studied the 0.01 M CaCl2 extractable NO3--N, NH4+-N, Norg, P and K contents of the soil samples originated from a long term fertilisation trial in the experimental site Hajdúböszörmény. Relationships among the soil nutrient contents, the agronomic nutrient balances of the 2009 year, and fertilization were studied.
From the results of the study it was concluded as follows:
– Fertilization significantly increased the CaCl2 extractable NO3--N, NH4+-N, and K contents of soil.
– Norg fraction increased as a function of the increasing yield. Hence, it can be assumed that the greater the produced yield, the more the stubble and root residues remain on the arable land. These organic residues can result significant increase in the Norg content of soils.
– The CaCl2 extractable P and K contents were compared with the calculated P and K limit values. According to these, the experimental soil has a good phosphorus and lower potassium supply capacity. These results are in accordance with the results of the conventional Hungarian fertilization recommendation system.
– It can be stated that the 0.01 M CaCl2 is able to determine not just inorganic N forms but Norg fraction as well that characterize the easily mineralizable nitrogen reserves. The results proved that AL-P and -K (ammonium lactate acetic acid, traditional Hungarian extractant) are in good agreement with the P and K reserves, but it is important from the aspect of environmental protection and plant nutrition to measure the easily soluble and exchangeable K-, and P-contents of soil. 0.01 M CaCl2 method is recommended for this. -
Long-term experiments on chernozem soil in the University of Debrecen
357-369Views:251The impact of agrotechnical management practices (nutrient and water supply, crop rotation, crop protection, genotype) on the yields of winter wheat and maize and on the soil water and nutrient cycles was studied in long-term experiments set up in 1983 in Eastern Hungary on chernozem soil. The long-term experiments have shown that nitrogen fertilizer rates exceeding the N-optimum of winter wheat resulted in the accumulation of NO3-N in the soil. Winter wheat varieties can be classified into four groups based on their natural nutrient utilization and their fertilizer response. The fertilizer responses of wheat varieties depended on crop year (6.5–8.9 t ha-1 maximum yields in 2011–2015 years) and the genotypes (in 2012 the difference was ~3 t ha-1 among varieties). The optimum N(+PK) doses varied between 30–150 kg ha-1 in different crop years. In maize production fertilization, irrigation and crop rotation have decision role on the yields. The efficiency of fertilization modified by cropyear (in dry 891–1315 kg ha-1, in average 1927–4042 kg ha-1, in rainy cropyear 2051–4473 kg ha-1 yield surpluses of maize, respectively) and crop rotation (in monoculture 1315–4473 kg ha-1, in biculture 924–2727 kg ha-1 and triculture 891–2291 kg ha-1 yield surpluses of maize, respectively). The optimum fertilization could improve the water use efficiency in maize production.
Our long-term experiments gave important ecological and agronomic information to guide regional development of sustainable cropping systems.
-
The effect of fertilization and plant protection in sunflower (Helianthus annuus L.) production
57-63Views:257Sunflower is the most important oil crop in Europe which is grown on the biggest area of all the oil crops. The area of producing sunflowers in Hungary was changing to 524–704 thousand hectares in the past decade in comparison with approximately 100 thousand hectares in the 1970’s. In our experiment different sunflower hybrids were examined. The doses of fertilizers were the following in 2017 and 2018: 0–30–90–150 kg ha-1 N, 0-50-90-90 kg ha-1 P2O5 and 0–70–110–110 kg ha-1 K2O. Three different treatments of plant protection were used in the experiment to protect them from fungal infections. A rise in the dosage of nitrogen resulted in increasing infection. The biggest fungal infection was identified in 150 kg ha-1 N, 90 kg ha-1 P2O5 and 110 kg ha-1 K2O treatment. The largest infection was measured on plots without plant protection at the highest N doses, both in leaf and disc diseases. We measured the highest 41.25% in 2017 and 53.1% in 2018 Diaporthe helianthi infection, and 24.5% in 2017 and 25.5 % in 2018 Sclerotinia sclerotiorum disc infection in these plots. kg ha-1
Average yield was changing between 2.96–4.67 t ha-1 in 2017/2018. The lowest yield was obtained in the absolute control plot (without plant protection and without nutrient) in both years, which was 2.96 t ha-1 in 2017 and 3.14 t ha-1. The yields increased due to growing nutrient supply and excellent plant protection. The highest yields were 3.67 t ha-1 in 2017 and 4.67 t ha-1 in 2018 (150 kg ha-1 N, 90 kg ha-1 P2O5 and 110 kg K2O active substance). Purpose of the experiment at analysing the impact of different treatments on the profitability of sunflower production.
-
Integrated nutrient supply and varietal difference influence grain yield and yield related physio-morphological traits of durum wheat (Triticum turgidum L.) varieties under drought condition
111-121Views:149The ever-growing world population entails an improvement in durum wheat grain yield to ensure an adequate food supply, which often gets impaired by several biotic and abiotic factors. Integrated nutrient management, such as nitrogen rate × foliar zinc × sulphur fertilization combined with durum wheat varieties were investigated in order to examine the dynamics of yield and yield related physio-morphological traits under drought conditions. The four durum wheat varieties, three-level of nutrient supply (i.e. control, sulphur, and zinc), and two nitrogen regimes (i.e. zero and 60 kg ha−1) were arranged in split-split plot design with three replications. Zinc and sulphur were applied as foliar fertilisation during the flag leaf stage, both at a rate of 3 and 4 liters ha-1, respectively. Results showed existence of genetic variability for grain yield, plant height, NDVI, SPAD and spike density. Foliar based application of zinc and sulphur at the latter stage improved the plant height. Nitrogen fertilized varieties with lower spike numbers showed to better yield formation. Co-fertilization of nitrogen and zinc improved grain yield of responsive varieties like Duragold by about 21.3%. Spikes per m2 were statistically insignificant for grain yield improvement. It could be inferred that the observed positive effect of sulphur, nitrogen and zinc application on physio-morphology and yield formation substantiates the need to include these essential nutrients in the cultivation system of durum wheat.