Articles

Preliminary study: The effect of gibberellic acid and girdling application on two dual-purpose grape varieties in a cool climate

Published:
2025-06-08
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Tóth, A. M., Zsófi, Z., & Veres, S. (2025). Preliminary study: The effect of gibberellic acid and girdling application on two dual-purpose grape varieties in a cool climate. Acta Agraria Debreceniensis, 1, 139-144. https://doi.org/10.34101/actaagrar/1/15540
Received 2025-03-20
Accepted 2025-05-16
Published 2025-06-08
Abstract

In our 2023 experiment, Nero and Muscat Pölöskei grapevines were treated with gibberellic acid (12 mg L-1) during flowering, followed by stem-end girdling at the onset of berry development. Photosynthetic activity was monitored regularly. Assimilation rate (A, µmol CO₂ m⁻² s⁻¹) and transpiration rate (E, mol H₂O m⁻² s⁻¹) were measured under natural light. Sugar content and acidity were assessed via refractometry, while berry dimensions and texture (e.g., berry hardness [Bh, mN]) were recorded. Gibberellin treatment increased sugar content compared to both control and girdled samples. However, girdling significantly enhanced sugar accumulation in Muscat Pölöskei compared to untreated samples. Gibberellin also induced berry elongation, increasing the longitudinal axis in Nero (19%) and Muscat Pölöskei (24%). Girdling temporarily reduced photosynthetic activity, which recovered post-healing. The elongated berries due to gibberellin treatment led to a looser cluster structure, which is beneficial for Nero, which is prone to fungal diseases due to dense clusters.

References
  1. Abu-Zahra, T.; Salameh, N. (2012): Influence of gibberellic acid and cane girdling on berry size of black magic grape cultivar. Middle-East Journal of Scientific Research, 11, 718–722.
  2. Anastasiou, E.; Xanthopoulos, G.; Templalexis, C.; Lentzou, D.; Panitsas, F.; Mesimeri, A.; Karagianni, E.; Biniari, A.; Fountas, S. (2022): Climatic indices as markers of table-grapes postharvest quality: A prediction exercise. Smart Agricultural Technology, 2, 100059. https://doi.org/https://doi.org/10.1016/j.atech.2022.100059
  3. Basile, T.; Alba, V.; Gentilesco, G.; Savino, M.; Tarricone, L. (2018): Anthocyanins pattern variation concerning thinning and girdling in commercial Sugrathirteen® table grape. Scientia Horticulturae, 227, 202–206. https://doi.org/https://doi.org/10.1016/j.scienta.2017.09.045
  4. Bernáth, S.; Paulen, O.; Šiška, B.; Kusá, Z.; Tóth, F. (2021): Influence of Climate Warming on Grapevine (Vitis vinifera L.) Phenology in Conditions of Central Europe (Slovakia). Plants, 10(5), 1020. https://doi.org/10.3390/plants10051020
  5. Brar, H.; Singh, Z.; Swinny, E.; Cameron, I. (2008): Girdling and grapevine leafroll-associated viruses affect berry weight, color development, and accumulation of anthocyanins in “Crimson Seedless” grapes during maturation and ripening. Plant Science, 175. https://doi.org/10.1016/j.plantsci.2008.09.005
  6. Castellarin, S.D.; Gambetta, G.A.; Wada, H.; Krasnow, M.N.; Cramer, G.R.; Peterlunger, E.; Shackel, K.A.; Matthews, M.A. (2016): Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth. Journal of Experimental Botany, 67(3), 709–722. https://doi.org/10.1093/jxb/erv483
  7. Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Mattii, G. (2021): Effect of Agronomic Techniques on Aroma Composition of White Grapevines: A Review. Agronomy, 11(10), 2027. https://doi.org/10.3390/agronomy11102027
  8. Chironi, S.; Sortino, G.; Allegra, A.; Saletta, F.; Caviglia, V.; Ingrassia, M. (2017): Consumer assessment on sensory attributes of fresh table grapes Cv “Italia” and “red globe” after long cold storage treatment. Chemical Engineering Transactions, 58, 421–426. https://doi.org/10.3303/CET1758071
  9. Dokoozlian, N.K.; Peacock, W.L. (2001): Gibberellic Acid Applied at Bloom Reduces Fruit Set and Improves Size of “Crimson Seedless” Table Grapes. HortScience 36(4). https://doi: 10.21273/hortsci.36.4.706
  10. Düring, H. (1978): Untersuchungen zut Umweltabhängigkeit der stomatären Transpiration bei Reben. II: Ringelungs- und Temperatureffekte. Vitis, 17, 1–9.
  11. Ezzahouani, A.; Williams, L. (2001): The effects of thinning and girdling on leaf water potential, growth and fruit composition of Ruby Seedless grapevines. Journal International Des Sciences de La Vigne et Du Vin, 35, 79–85. https://doi.org/10.20870/oeno-one.2001.35.2.985
  12. Ferrara, G.; Mazzeo, A.; Netti, G.; Pacucci, C.; Matarrese, A.M.S.; Cafagna, I.; Mastrorilli, P.; Vezzoso, M.; Gallo, V. (2014): Girdling, gibberellic acid, and forchlorfenuron: Effects on yield, quality, and metabolic profile of table grape cv. Italia. American Journal of Enology and Viticulture, 65(3), 381–387. https://doi.org/10.5344/ajev.2014.13139
  13. Gökbayrak, Z.; Keskin, N.; İşçi, B. (2013). Effects of cane-girdling and cluster and berry thinning on berry organic acids of four Vitis vinifera L. table grape cultivars. Acta Scientiarum Polonorum. Hortorum Cultus, 12, 115–125.
  14. Goren, R.; Huberman, M.; Goldschmidt, E. (2010): Girdling: Physiological and Horticultural Aspects. Horticultural Reviews. 30, 1-36. https://doi.org/10.1002/9780470650837.ch1
  15. Hartmann, H.; Trumbore, S. (2016): Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytologist, 211(2), 386–403. https://doi.org/https://doi.org/10.1111/nph.13955
  16. Koshita, Y.; Yamane, T.; Yakushiji, H.; Azuma, A.; Mitani, N. (2011): Regulation of skin color in ‘Aki Queen’ grapes: Interactive effects of temperature, girdling, and leaf shading treatments on coloration and total soluble solids. Scientia Horticulturae, 129(1), 98–101. https://doi.org/10.1016/j.scienta.2011.03.014
  17. Letaief, H.; Rolle, L.; Gerbi, V. (2008): Mechanical behavior of Winegrapes under compression tests. American Journal of Enology and Viticulture, 59, 323–329.
  18. Letaief, H.; Rolle, L.; Zeppa, G.; Gerbi, V. (2008): Assessment of grape skin hardness by a puncture test. Journal of the Science of Food and Agriculture, 88, 1567–1575. https://doi.org/10.1002/jsfa.3252
  19. López, R.; Brossa, R.; Gil, L.; Pita, P. (2015): Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00285
  20. Lukácsy, G.; Villangó, S.; Váradi, G.; Hajdu, E.; Zanathy, G.; Bálo, B.; Zsófi, Z. (2021): The effect of cane girdling on berry skin phenolic concentration of three table grape varieties. Journal of Central European Agriculture, 22(2), 341–345. https://doi.org/10.5513/JCEA01/22.2.3152
  21. Lukácsy, Gy.; Zanathy, G. (2011): A gyűrűzés. Agrofórum, 7, 96–98.
  22. Mattii, G.; Orlandini, S. (2005): Source-sink balance in grapevines as affected by trellis system. Acta Horticulturae, 689, 197–202. https://doi.org/10.17660/ActaHortic.2005.689.21
  23. OIV (2022). Compendium of International Methods of Wine and Must Analysis. International Organisation of Vine and Wine.
  24. Pálfi, X.; Villangó, S.; Karácsony, Z.; Kátai, J.; Zsófi, Z. (2022): The Effect of Paraffin Oil Spraying and Powdery Mildew Infection on Leaf Gas Exchange and Yield of Chardonnay and Kékfrankos (Vitis vinifera L.) in Hungary. Agronomy, 12(11). https://doi.org/10.3390/agronomy12112684
  25. Pilati, S.; Bagagli, G.; Sonego, P.; Moretto, M.; Brazzale, D.; Castorina, G.; Simoni, L.; Tonelli, C.; Guella, G.; Engelen, K.; Galbiati, M.; Moser, C. (2017): Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01093
  26. Proietti, P.; Tombesi, A. (1990): Effect Of Girdling on Photosynthetic Activity in Olive Leaves. Acta Horticulturae, 286, 215–218. https://doi.org/10.17660/ActaHortic.1990.286.44
  27. Reynolds, A.G.; de Savigny, C. (2004): Influence of Girdling and Gibberellic Acid on Yield Components, Fruit Composition, and Vestigial Seed Formation of `Sovereign Coronation’ Table Grapes. HortScience, 39(3), 541–544. https://doi.org/10.21273/HORTSCI.39.3.541
  28. Río Segade, S.; Orriols, I.; Giacosa, S.; Rolle, L. (2011): Instrumental Texture Analysis Parameters as Winegrapes Varietal Markers and Ripeness Predictors. International Journal of Food Properties, 14(6), 1318–1329. https://doi.org/10.1080/10942911003650320
  29. Roebroek, C.; Melsen, L.A.; van Dijke, A.; Fan, Y.; Teuling, A. (2020): Global distribution of hydrologic controls on forest growth. Hydrology and Earth System Sciences, 24, 4625–4639. https://doi.org/10.5194/hess-24-4625-2020
  30. Setter, T.L.; Brun, W.A.; Brenner, M.L. (1980): Effect of Obstructed Translocation on Leaf Abscisic Acid, and Associated Stomatal Closure and Photosynthesis Decline. Plant Physiology, 65(6), 1111–1115. https://doi.org/10.1104/pp.65.6.1111
  31. Soltekin, O.; Candemir, A.; Altindişli, A. (2016): Effects of cane girdling on yield, fruit quality and maturation of (Vitis vinifera L.) cv. Flame Seedless. BIO Web of Conferences, 7, 01032. https://doi.org/10.1051/bioconf/20160701032
  32. Tardaguila, J.; de Toda, F.M.; Poni, S.; Diago, M.P. (2010): Impact of Early Leaf Removal on Yield and Fruit and Wine Composition of Vitis vinifera L. Graciano and Carignan. American Journal of Enology and Viticulture, 61(3), 372–381. https://doi.org/10.5344/ajev.2010.61.3.372
  33. Tóth, A.M. (2020): Precision canopy management of the grapevine. Early defoliation and girdling. Acta Carolus Robertus, Különszám, 107–118. https://doi.org/10.33032/acr.2020.spec.107
  34. Tóth, A.M.; Veres, S.; Zsófi, Z. (2022a): Texture analysis as a method for grape berry characterization. Acta Agraria Debreceniensis / Agrártudományi Közlemények, 2022. https://doi.org/10.34101/actaagrar/2/10368
  35. Tóth, A.M.; Veres, S.; Zsófi, Z. (2024): The effects of vintage and cane girdling on the texture properties of some table grape cultivars in a cool climate region. Acta Horticulturae, 147–156. https://doi.org/10.17660/ActaHortic.2024.1385.19
  36. Tóth, A.M.; Zsófi, Z.; Veres, S. (2022b): Cane Girdling Influence on the Berry Texture Properties of Three Table Grape Varieties. Horticulturae, 8. https://doi.org/10.3390/horticulturae8121101
  37. Yamane, T.; Shibayama, K. (2006): Effects of Trunk Girdling and Crop Load Levels on Fruit Quality and Root Elongation in ‘Aki Queen’ Grapevines. Journal of the Japanese Society for Horticultural Science, 75, 439–444. https://doi.org/10.2503/jjshs.75.439
  38. Zabadal, T. (1992): Response of `Himrod’ Grapevines to Cane Girdling. HortScience, 27. https://doi.org/10.21273/HORTSCI.27.9.975
  39. Zsófi, Z.; Villangó, S.; Pálfi, Z.; Pálfi, X. (2015): Combined effect of berry size and postveraison water deficit on grape phenolic maturity and berry texture characteristics (Vitis vinifera L. ’Portugieser’). Vitis-Geilweilerhof, 54, 161–168. https://doi.org/10.5073/vitis.2015.54.161-168