Articles

Texture analysis as a method for grape berry characterization

Published:
December 6, 2022
Authors
View
Keywords
License

Copyright (c) 2022 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Toth, A. M., Veres, S., & Zsofi, Z. (2022). Texture analysis as a method for grape berry characterization. Acta Agraria Debreceniensis, 2. https://doi.org/10.34101/actaagrar/2/10368
Received 2021-11-26
Accepted 2022-10-24
Published 2022-12-06
Abstract

The marketability of table grapes is mainly characterized by berry size, color, taste and texture. Mechanical measurements of table grape berries could provide objective information on the textural qualities of grape berries. In addition, this method might be suitable to study the effects of phytotechnical methods (such as girdling) on table grape quality. The aim of this preliminary work was to demonstrate how instrumental testing could be used to examine the effects of girdling on berry grape texture and define the textural characteristics of table grape berries. Cane girdling was carried out at veraison in two table grape varieties. Texture analysis was performed several times during the maturity. Besides this examination another five varieties were analyzed to assess their berry mechanical properties. Double compression test was used to determine berry hardness and its derived parameters. Puncture test was applied to evaluate skin hardness, skin elasticity and skin break energy. Skin thickness was also investigated. Berry hardness, skin hardness and skin thickness of the girdled grapevines were significantly affected by this technique. Most of the textural parameters showed differences among the seven cultivars.

References
  1. Abu-Zahra, T.R.– Salameh, N. (2012): Influence of Gibberelic Acid and Cane Girdling on Berry Size of Black Magic grape cultivar. Middle-East Journal of Scientific Research, 11(6), 718–722.
  2. Basile, T.A. (2018). Anthocyanins pattern variation in relation to thinning and girdling in commercial Sugrathirteen ® table grape. Scientia Hortuculturae, 227, 202-–06. doi:10.1016/j.scienta.2017.09.045
  3. Bernstein, Z.–Lustig, I. (1981): A new method of firmness measurement of grape berries and other juicy fruits. Vitis, 20, 15–21.
  4. Dokoozlian, N. D. (1995): Cultural practices improve color, size of ‘Crimson Seedless'. Calif. Agric., 49, 36–40.
  5. Düring, H. (1978): Untersuchungen zur Umweltabhängigkeit der stomätaren Transpiration bei Reben. II. Ringeolungs- und Temperatureffekte. Vitis, 17.
  6. Ezzahuani, A.–Williams, L.E. (2001): The effects of thinning and girdling on leaf water potential, growth and fruit composition of Ruby seedless grapevines. Journal International des Sciences de la Vigne et du Vin, 35(2), 79–85.
  7. Ferrara, G.M. (2014): Girdling, Gibberelic Acid and Forchlorfenuron Effects on Yield, Quality, and Metabolic Profile of Table Grape cv. Italia. American Journal of Enology and Viticulture, 65(3), 381–387. doi:10.5344/ajev.2014.13139
  8. Goren, R.H.–Goldschmidt, E.–Goldschmidt, E.E. (2010): Girdling: Physiological and Horticultural Aspects. Horticultural Reviews, 30(8), 1–36. doi:doi.org/10.1002/9780470650837.ch1
  9. Grotte, M.–Cadot, Y.–Poussier, A.–Loonis, D.–Piétri, E.–Duprat, F.–Barbeau, G. (2001): Determination of the maturity status of grape berry (Vitis Vinifera) from physical measurement: methodology. J. Int. Sci. Vigne Vin, 35(2), 87–98.
  10. Hajdu, E.–Ésik, A. (2001): Új magyar szőlőfajták. Budapest: Mezőgazda Kiadó.
  11. Internet 1. (dátum nélk.). Letöltés dátuma: 2021. 11 15, forrás: Stable Micro System: https://www.stablemicrosystems.com/TextureAnalysisProperties.html
  12. Kaur, M.G.–Gill, M. I.S.–Arora, N.K. (2013): Effect of pre-harvest treatment on yield maturity and quality of Flame Seedless grape (Vitis vinifera L.). Journal of Horticultural Sciences, 8(1), 35–40.
  13. Keller, M. (2010): The Science of the Grapevines. doi:10.1016/C2009-0-01866-2
  14. Keskin, N.–İșçi, B.–Gökbayrak, Z. (2013): Effects of cane-girdling and cluster and berry thinning on berry organic acids of four Vitis vinifera L. cultivars. Acta Polonorum, 12(6), 115–125.
  15. Le Moigne, M.–Maury, M.–Bertrand, D.–Jourjon, F. (2008): Sensory and instrumental characterisation of Cabernet franc grapes according to ripening stages and growing location. Food Quality and Preference, 19, 220–231.
  16. Letaief, H.–Rolle, L.–Gerbi, V. (2008a): Mechanical behavior of winegrapes under compression tests. American Journal of Enology and Viticulture, 59, 323.
  17. Letaief, H.–Rolle, L.–Gerbi, V. (2008b). Assessment of grape skin hardness by a puncture test. J. Sci. Food Agric., 1567–1575.
  18. Letaief, H., Rolle, L., Zeppa, G., Gerbi, V. (2006): Grape skin and seeds hardness assessment by texture analysis. IUFoST World Congress, 13th World Congress of Food Science & Technology, (2006. September 17–21) 1874–1856. Forrás: https://iufost.edpsciences.org/articles/iufost/pdf/2006/01/iufost06000337.pdf
  19. Lukácsy, Gy.–Hajdu, E.–Komor, Sz.–Nieszner, T.–Zanathy, G.–Bisztray, Gy.D. (2014): A gyűrűzés hatása a ‘Fanny’ csemegeszőlő fajta termésének mennyiségi és minőségi mutatóira. Kertgazdaság, 46 (1): 48–54
  20. Lukácsy, Gy.–Zanathy, G. (2011): A gyűrzés. Agrofórum, 22 (7), 96–98.
  21. OIV. (2017): Letöltés dátuma: 2021. 11 15, forrás: Distribution of the world’s grapevine varieties: https://www.oiv.int/public/medias/5888/en-distribution-of-the-worlds-grapevine-varieties.pdf
  22. OIV. (2019): Letöltés dátuma: 2021. 04 12, forrás: 2019 Statistical Report on World Vitiviniculture: https://www.oiv.int/public/medias/6782/oiv-2019-
  23. Poni, S.–Casalini, L.–Bernizzoni, F.–Civardi, S.–Intrieri, C. (2006): Effects of early defoliation on shoot photosynthesis, yield components and grape composition. American Journal of Enology and Viticulture, 57(4), 397–407.
  24. Reynolds, A.G.–de Savigny, C. (2004): Influence of Girdling and Gibberellic Acid on Yield Components, Fruit Composition, and Vestigial Seed Formation of “Sovereign Coronation” Table Grapes. HortScience, 39, 541–544.
  25. Río Segade, S.–Giacosa, S.–Torchio, F.–Palma, L.–Novello, V.–Gerbi, V.–Rolle, L. (2013): Impact of different advanced ripening stages on berry texture properties of “Red Globe” and “Crimson Seedless” table grape cultivars (Vitis vinifera L.). Scientia Horticulurae, 160, 313–319.
  26. Río Segade, S.–Ignacio, O.–Giacosa, S.–Rolle, L. (2011): Instrumental texture analysis parameters as winegrapes varietal markers and ripeness predictors. Internetional Journal of Food Properties, 14.
  27. Río Segade, S.–Rolle, L.–Gerbi, L.–OrRíols, I. (2008): Phenolic ripeness assessment of grape skin by texture analysis. Journal of Food Composition and Analysis, 644–649. doi:10.1016/j.jfca.2008.06.003
  28. Rolle, L.–Siret, R.–Río Segade, S.–Maury, C.–Gerbi, V.–Jourjon, F. (2012): Instrumental Texture Analysis Parameters as Markers of Table-Grape and Winegrape Quality: A Review. American Journal of Enology and Viticulture, 63(1), 11–28.
  29. Rolle, L.–Caudana, A.–Giacosa, S.–Gerbi, S.–Río Segade, S. (2011a): Influence of the skin hardness on the wine-grapes dehydration kinetics. Journal of the Science of Food and Agriculture, 91, 505–511.
  30. Rolle, L.–Giacosa, S.–Gerbi, V.–Novello, V. (2011b): Comparative Study of Texture Properties, Color Characteristics, and Chemical Composition of Ten White Table-Grape Varieties. American Journal of Enology and Viticulture, 62(1), 49–56. doi:10.5344/ajev.2010.10029
  31. Rolle, L.–Giacosa, S.–Gerbi, V.–Bertolino, M.–Novello, V. (2013): Varietal Comparison of The Chemical, Physical, and Mechanical Properties of Five Colored Table Grapes. International Journal of Food Properties, 3, 598–612.
  32. Rolle, L.–Torchi, F.–Giacosa, S.–Río Segade, S. (2015): Berry density and size factors related to the physiochemical characteristics of Muscat hamburg table grapes (Vitis vinifera L.). Food Chemistry, 173, 105–113. doi:doi.org/10.1016/j.foodchem.2014.10.033
  33. Sato, A.–Yamada, M. (2003): Berry Texture of Table, Wine, And Dual-purpose Grape Cultivars Quantified. HortScience, 38(4), 578–581. doi:10.21273/hortsci.38.4.578
  34. Sato, A.–Yamane, H.–Hirakawa, N.–Otobe, K.–Yamada, M. (1997): Varietal differences in the texture of grape berries measured by penetration tests. Vitis, 7–10.
  35. Soltekin, O.–Candemir, A.–Altindisli, A. (2016): Effects on cane girdling on yield, fruit quality and maturation of (Vitis vinifera L.) cv. Flame Seedless. BIO Web of Conferences, 7 (01032), 1–5. doi:10.1051/bioconf/20160701032
  36. Soltekin, O.–Teker, T.–Erdem, A.–Kacar, E.–Altindisli, A. (2015): Response of 'Red Globe' (Vitis vinifera L.) to cane girdling. BIO Web of Conferences, 5((01019)). doi:doi.org/10.1051/bioconf/20150501019
  37. Tóth, A.M. (2020): Precision canopy management of the grapevine: early defoliation and girdling, Acta Carolus Robertus, 107–118.
  38. Tóth, I.–Pernesz, G. (2001): Szőlőfajták. Budapest: Mezőgazda Kiadó.
  39. Villangó, Sz.–Pásti, Gy.–Kállay, M.–Leskó, A.–Balga, I.–Donkó, M.–Ladányi, M.–Pálfi, Z.–Zsófi, Zs. (2015): Enhancing phenolic maturity of Syrah with the application of a new foliar spray. South African Journal for Enology and Viticulture, 36 (3), 304–315 Doi:10.21548/36-3-964
  40. Williams, L.E.–Ayars, J.E. (2005): Wateruse of Thompson Seedless grapevines as affected by the application of gibberelic acid (GA3) and trunk girdling - practices to increase berry size. Agricultural and Forest Meteorology 12985-94, 129(1–2). doi:doi.org/10.1016/j.agrformet.2004.11.007
  41. Yamane, T.–Shibayama, K. (2006): Effects of Trunk Girdling and Crop Load Levels on Fruit Quality and Root Elongation in ‘Aki Queen’ Grapevines. Journal of the Japanese Society for Horticultural Science, 6, 439–444. doi:10.2503/jjshs.75.439
  42. Zabadal, J.T. (1992): Response of ’Himrod’ Grapevines to Cane Girdling. Journal of the American Society for Horticultural Science, 27(9), 975–976.
  43. Zsófi, Zs.–Villango, S.–Pálfi, Z.–Tóth, E.–Bálo, B. (2014): Texture characteristics of the grape berry skin and seed (Vitis vinifera L. cv. Kékfrankos) under postveraison water deficit. Scientia Horticulturae, 172, 176–182. doi: 10.1016/j.scienta.2014.04.008