Articles

A global bibliographic review of soil variability trends on arable land: An impetus to sustainable land management

Published:
2025-12-02
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Kuunya, R., Ocwa, A., Széles, A., & Ragán, P. (2025). A global bibliographic review of soil variability trends on arable land: An impetus to sustainable land management. Acta Agraria Debreceniensis, 2, 27-39. https://doi.org/10.34101/actaagrar/2/15264
Received 2024-12-12
Accepted 2025-10-07
Published 2025-12-02
Abstract

Crop production is significantly affected by soil properties under the influence of climate, management practices, and geographical location. Soil variability affects the development, quality, biochemical reactions, and heterogeneity of soil. The most recent research has focused on soil variability monitoring, highlighting the importance of soil testing. This review aimed at identifying global research trends and assessing soil testing in monitoring variability on arable land, based on the bibliographic method. Literature search in Scopus Database (2020-2023) yielded 8,898 documents, refined to 815 articles. VOSviewer 1.6.20 Software was used for analysing exported data. The results revealed a growing emphasis on monitoring soil variability, with key countries including India, United States of America (USA), China, Australia, Canada, United Kingdom, and Brazil. Funding mainly came from Asia, North America, and Europe. Common monitoring approaches included soil tests and remote sensing, focusing on organic carbon, nitrogen, phosphorus, potassium, microorganisms, and soil moisture. However, digital illiteracy and high costs were major hindrances to using remote sensing and modern soil testing tools. The study suggests that whereas soil variability monitoring is essential for sustainable land management, development of affordable soil testing equipment and improved digital education are needed for its enhanced adoption.

References
  1. Abdu, A.; Laekemariam, F.; Gidago, G.; and Getaneh, L. (2023): Explaining the Soil Quality Using Different Assessment Techniques. Applied and Environmental science, 1–15. https://doi.org/10.1155/2023/6699154
  2. Alamanis, N.; Dakoulas, P. (2022): Effects of spatial variability of soil properties and ground motion characteristics on permanent displacements of slopes. Soil Dynamics and Earthquake Engineering, 161. https://doi.org/10.1016/j.soildyn.2022.107386
  3. Alletto, L.; Cueff, S.; Bréchemier, J.; Lachaussée, M.; Derrouch, D.; Page, A.; Gleizes, B.; Perrin, P.; Bustillo, V. (2022): Physical properties of soils under conservation agriculture: A multi-site experiment on five soil types in south-western France. Geoderma, 428, 116228. https://doi.org/10.1016/j.geoderma.2022.116228
  4. Alqadad, A.; Shahrour, I.; Sukik, A. (2017): Smart system for safe and optimal soil investigation in urban areas. Underground Space, 2(4), 220–226. https://doi.org/10.1016/j.undsp.2017.10.003
  5. Anderson, N.P.; Hart, J.M.; Horneck, D.A.; Sullivan, D.M.; Christensen, N.W.; Pirelli, G.J. (2010): Evaluating soil nutrients and pH by depth in situations of limited or no tillage in Western Oregon. https://catalog.extension.oregonstate.edu/em9014
  6. Andrews, S.S.; Flora, C.B.; Mitchell, J.P.; Karlen, D.L. (2003): Growers’ perceptions and acceptance of soil quality indices. Geoderma, 114(3-4), 187–213. https://doi.org/10.1016/S0016-7061(03)00041-7
  7. Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. (2020): Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1), 377–386. https://doi.org/10.1162/qss_a_00019
  8. Bezak, N.; Mikoš, M.; Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; ... and Panagos, P. (2021): Soil erosion modelling: A bibliometric analysis. Environmental research, 197, 111087. https://doi.org/10.1016/j.envres.2021.111087
  9. Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, K.; Anil, K.S.; Lalitha, M.; Hati, K.M.; Franzluebbers, A.J. (2015): Soil degradation in India: Challenges and potential solutions. Sustainability, 7(4), 3528–3570. https://doi.org/10.3390/su7043528
  10. Bhunia, G.S.; Shit, P.K.; Chattopadhyay, R. (2018): Assessment of spatial variability of soil properties using geostatistical approach of lateritic soil (West Bengal, India). Annals of Agrarian Science, 16(4), 436–443. https://doi.org/10.1016/j.aasci.2018.06.003
  11. Bisht, N.; Chauhan, P.S. (2020): Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. Soil contamination – Threats and Sustainable Solutions. https://doi.org/10.5772/intechopen.94593
  12. Blunk, A.; Gioia, F.D. (2022): Real-time, on-farm soil monitoring methods for in-season management of fertigation in vegetable crop protected cultivation systems. https://doi.org/10.17660/ActaHortic.2023.1377.98
  13. Bukar, U.A.; Sayeed, M.S; Fatimah, S.; Razak, S.; Yogarayan, S.; Amodu, O.A.; Mahmood, R.A.R. (2023): A method for analyzing text using VOSviewer. MethodsX, 11. https://doi.org/10.1016/j.mex.2023.102339
  14. Chankseliani, M. (2023): Who funds the production of globally visible research in the Global South? Scientometrics, 128(1), 783–801. https://doi.org/10.1007/s11192-022-04583-4
  15. Chen, G.; Xiao, L. (2016): Selecting publication keywords for domain analysis in bibliometrics: A comparison of three methods. Journal of Informetrics, 10(1), 212–223. https://doi.org/10.1016/j.joi.2016.01.006
  16. Cheng, P.; Tang, H.; Dong, Y.; Liu, K.; Jiang, P.; Liu, Y. (2021): Knowledge mapping of research on land use change and food security: A visual analysis using CiteSpace and VOSviewer. International Journal of Environmental Research and Public Health, 18(24), 13065. https://doi.org/10.3390/ijerph182413065
  17. Cleary, D.M.; Linley, T.J.; Kriesel, J.M.; Kelly, F.A.; Moran, J.F.; James, J. (2023): Laser ablation-capillary absorption spectroscopy: A novel approach for high throughput and increased spatial resolution measurements of δ13C in plant-soil systems. Soil Biology and Biochemistry, 187, 109208. https://doi.org/10.1016/j.soilbio.2023.109208
  18. Corrin, L.; Thompson, K.; Hwang, G.J.; Lodge, J.M. (2022): The importance of choosing the right keywords for educational technology publications. Australasian Journal of Educational Technology, 38(2), 1–8. https://doi.org/10.14742/ajet.8087
  19. Crispim, R.T.; Netto, C.O.; Camboim, G.F.; Camboim, F.F. (2022): Capabilities for service innovation: Bibliometric analysis and directions for future research. UP Mackenzie, 23(6), 1–29. https://doi.org/10.1590/1678-6971/eRAMD220030.en
  20. Davies, B.; Gush, J.; Hendy, S.C.; Jaffe, A.B. (2022): Research funding and collaboration. Research Policy, 51(2), 104421. https://doi.org/10.1016/j.respol.2021.104421
  21. Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. (2021): How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  22. Dubovik, O.; Schuster, G.L.; Xu, F.; Hu, Y.; Bösch, H.; Landgraf, J.; Li, Z. (2021): Grand Challenges in Satellite Remote Sensing. Frontiers in Remote Sensing, 2. https://doi.org/10.3389/frsen.2021.619818
  23. Duman, A.; Yildirim, C.; Tufekcioglu, M.; Tufekcioglu, A.; Satiral, C. (2023): Variation in Certain Soil Properties Based on Land Use Type, and Elevation in Arhavi Sub-Basin, Artvin, Turkiye. Sustainability, 15(11), 9114. https://doi.org/10.3390/su15119114
  24. Fageria, N.K.; Nascente, A.S. (2014): Management of soil acidity of South American soils for sustainable crop production. Advances in Agronomy, 128, 221–275. https://doi.org/10.1016/B978-0-12-802139-2.00006-8
  25. Fan, Y.; Wang, X.; Funk, T.; Rashid, I.; Herman, B.; Bompoti, N.; Mahmud, M.S.; Chrysochoou, M.; Yang, M.; Vadas, T.M.; Lei, Y.; Li, B. (2022): A critical review for real-time continuous soil monitoring: Advantages, challenges, and perspectives. National Aeronautics and Space Administration. Environmental Science and Technology, 56(19). https://doi.org/10.1021/acs.est.2c03562.
  26. FAO (2020): Protocol for the assessment of Sustainable Soil Management: Intergovernmental Technical Panel on Soils. Food and Agriculture Organisation of the United States, Rome, 2020. FAO-ITPS 2020. https://www.fao.org/fileadmin/user_upload//GSP/SSM/SSM_Protocol_EN_006.pdf
  27. Feeney, C.J.; Robinson, D.A.; Keith, A.M.; Vigier, A.; Bentley, L.; Smith, R.P.; Garbutt, A.; Maskell, L.C.; Norton, L.; Wood, C.M.; Cosby, B.J.; Emmett, B.A. (2023): Development of soil health benchmarks for managed and semi-natural landscapes. Science of The Total Environment, 886. https://doi.org/10.1016/j.scitotenv.2023.163973
  28. Geisseler, D.J.; Miyao, E.M. (2016): Soil testing for P and K has value in nutrient management for annual crops. California Agriculture, 70(3), 152–159. https://doi.org/10.3733/ca.2016a0007
  29. Hao, D.; Zhang, Y.; Chen, T.; Li, J. (2023): Acceptance intention and behavioral response to soil-testing formula fertilization technology: An empirical study of agricultural land in Shaanxi Province. Journal of Environmental Research and Public Health, 20(2). https://doi.org/10.3390/ijerph20020951.
  30. Hashem, A.R.; Salleh, N.Z.M.; Abdullah, M.; Ali, A.; Faisal, F.; Nor, R.M. (2023): Research trends, developments, and future perspectives in brand attitude: A bibliometric analysis utilizing the Scopus database (1944–2021). Heliyon, 9(1), e12765. https://doi.org/10.1016/j.heliyon.2022.e12765
  31. Hérubel, J.P.V.M. (2020): Significance of Scholarly Journal Articles and Academic Historians: Discussion, and a Necessary Tension? Publishing Research Quarterly, 36, 446–458. https://doi.org/10.1007/s12109-020-09744-y
  32. Heuschele, D.J.; Gamble, J.; Vetsch, J.A.; Shaeffer, C.C.; Coulter, J.A.; Kaiser, D.E.; Lamb, J.A.; Lamb, J.A.F.S.; Samac, D.A. (2023): Influence of potassium fertilization on alfalfa leaf and stem yield, forage quality, nutrient removal, and plant health. Agroecosystems, Geosciences & Environment, 6(1), e20346. https://doi.org/10.1002/agg2.20346.
  33. Hirawan, D.; Oktafiani, D.; Fauzan, T.A.; Luckyardi, S.; Jamil, N. (2022): Research trends in farming system soil chemical: A bibliometric analysis using VOSviewer. Moroccan Journal of Chemistry, 10(3), J-Chem. https://doi.org/10.48317/IMIST.PRSM/morjchem-v10i3.33145
  34. Hou, L.; Liu, Z.; Zhao, J.; Ma, P.; Xu, X. (2021): Comprehensive assessment of fertilization, spatial variability of soil chemical properties, and relationships among nutrients, apple yield and orchard age: A case study in Luochuan County, China. Ecological indicators, 122, 107285. https://doi.org/10.1016/j.ecolind.2020.107285
  35. Jezierski, P; Kabala, C. (2021): Geostatistical Tools to Assess Existing Monitoring Network of Forest Soils in a Mountainous National Park. Forests, 12(3), 333. https://doi.org/10.3390/f12030333
  36. Juhos, K.; Szabó, S.; Ladányi, M. (2015): Influence of soil properties on crop yield: a multivariate statistical approach. International Agrophysics, 29, 433–440. https://doi.org/10.1515/intag-2015-0049
  37. Kaur, H.; Nelson, K.A.; Singh, G.; Udawatta, R.P. (2023): Long-term drainage water recycling affects soil health and soil properties. Journal of Soil and Water Conservation, 78(4), 309–321. https://doi.org/10.2489/jswc.2023.00159
  38. Keohane, R.O. (1998): International Institutions: Can interdependence work? JSTOR, 110, 82–96+194. https://doi.org/10.2307/1149278
  39. Khechba, K.; Laamrani, A.; Dhiba, D.; Misbah, K.; Chehbouni, A. (2021): Monitoring and Analyzing Yield Gap in Africa through Soil Attribute Best Management Using Remote Sensing Approaches: A Review. Remote Sensing, 13(22), 4602. https://doi.org/10.3390/rs13224602
  40. Lagos, M.; Serna, J.L.; Muñoz, J.F.; Suárez, F. (2020): Challenges in determining soil moisture and evaporation fluxes using distributed temperature sensing methods. Journal of Environmental Management, 261. https://doi.org/10.1016/j.jenvman.2020.110232
  41. Lavanya, V.; Nayak, A.; Dasgupta, S.; Urkude, S.; Dey, S.; Biswas, A.; Li, B.; Weindorf, D.C.; Chakraborty, S. (2023): A smartphone-integrated imaging device for measuring nitrate and phosphate in soil and water samples. Microchemical Journal, 193. https://doi.org/10.1016/j.microc.2023.109042
  42. Lawrence, G.B. (2016): Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils. Journal of Visualised Experiments, 117. https://doi.org/10.3791/54815
  43. Leeuwen, J.P.; Asaby, N.P.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R.P.O.; Spiegel, H.; Toth, G.; Creamer, R.E. (2017): Gap assessment in current soil monitoring networks across Europe for measuring soil functions. Environmental Research Letters, 12(12), 124007. https://doi.org/10.1088/1748-9326/aa9c5c
  44. Liu, Y.; Ruiz-Menjivar, J.; Zhang, J. (2023): Do soil nutrient management practices improve climate resilience? Empirical evidence from rice farmers in Central China. Environment, Development and Sustainability, 25(9), 10029–10054. https://doi.org/10.1007/s10668-022-02475-4
  45. Liu, Z.; Li, J. (2023): Application of unmanned aerial vehicles in precision agriculture. College of Engineering, South China Agricultural University, Guangzhou 510642, China. Agriculture, 13(7), 1375. https://doi.org/10.3390/agriculture13071375
  46. Lobb, D.A. (2011). Understanding and managing the causes of soil variability, 66(6). Soil and water conservation society. Journal of Soil and Water Conservation, 66(6), 175A–179A. https://doi.org/10.2489/jswc.66.6.175A
  47. Lu, W.; Liu, Z.; Huang, Y.; Bu, Y.; Li, X.; Cheng, Q. (2020): How do authors select keywords? A preliminary study of author keyword selection behavior. Journal of Informetrics, 14(4), 101066. https://doi.org/10.1016/j.joi.2020.101066
  48. Minasny, B.; Fiantis, D.; Mulyanto, B.; Sulaeman, Y.; Widyatmanti, W. (2020): Global soil science research collaboration in the 21st century: Time to end helicopter research. Geoderma, 373, 114299. http://dx.doi.org/10.1016/j.geoderma.2020.114299
  49. Mishra, P.; Pandey, C.M.; Singh, U.; Keshri, A.; Sabaretnam, M. (2019): Selection of appropriate statistical methods for data analysis. Annals of Cardiac Anaesthesia, 22(3), 297–301. https://doi.org/10.4103/aca.ACA_248_18
  50. Mukherjee, A.; Lal, R. (2014): Comparison of soil quality index using three methods. PLoS One, 9(8). https://doi.org/10.1371/journal.pone.0105981
  51. Murrell, T.S.; Mikkelsen, R.L.; Sulewski, G.; Norton, R.; Thompson, M.L. (2021): Improving potassium recommendations for agricultural crops. https://doi.org/10.1007/978-3-030-59197-7
  52. Mwendwa, S.M.; Mbuvi, J.P.; Kironchi, G.; Gachene, C.K.K. (2022): Assessing spatial variability of selected soil properties in Upper Kabete Campus coffee farm, University of Nairobi, Kenya. Heliyon, 8(1), e10190. https://doi.org/10.1016/j.heliyon.2022.e10190
  53. Myeni, L.; Moeletsi, M.E.; Clulow, A.D. (2019): Present status of soil moisture estimation over the African continent. Journal of Hydrology: Regional Studies, 21, 14–21. https://doi.org/10.1016/j.ejrh.2018.11.004
  54. Nassaji, H. (2020): The importance of using multiple measures or data sources in L2 instructional research. Sage Journals, 24(2). https://doi.org/10.1177/1362168820906908
  55. Nguyen, H.B.K.; Rahman, M.M.; Karim, M.R. (2023): Effect of soil anisotropy and variability on the stability of undrained soil slope: Recent advances in numerical modelling for soil and soil-structure interactions. Frontiers in Built Environment, 9. https://doi.org/10.3389/fbuil.2023.1117858
  56. Noble, R.R.P.; Lau, I.C.; Pinchand, G.T. (2019): Refining fine fraction soil extraction methods and analysis for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 20, 113–128. https://doi.org/10.1144/geochem2019-008
  57. Norbu, J.; Pobkrut, T.; Thepudom, T.; Namgyel, T.; Chaiyasit, T.; Thazin, Y.; Kerdcharoen, T. (2018): Prediction of soil nitrogen content using E-nose and radial basis function. https://doi.org/10.1109/ECTICon.2018.8619904
  58. Nyirenda, H. (2022): Changes in tree structure, composition and soil in different disturbance categories in Miombo and agroecosystems in Malawi, central Africa. Heliyon, 8(9). https://doi.org/10.1016/j.heliyon.2022.e10664
  59. Oliveira, O.J.; Silva, F.F.; Juliani, F.; Barbosa, L.C.F.M.; Nunhes, T.V. (2019): Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: An essential instrument to support the development of scientific projects. https://doi.org/10.5772/intechopen.85856
  60. Palinkas, L.A.; Horwitz, S.M.; Gree, C.A.; Wisdom, J.P.; Duan, N.; Hoagwood, K. (2015): Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Administration and policy in Mental Health and Mental Health services research, 42, 533–544. https://doi.org/10.1007/s10488-013-0528-y
  61. Peñas, F.J.; Cabria, M.A.; Bariáin, M.S.; Campo, M.P.M.; Haase, A.P.; Ventura, M.; Gómez, M.J.P.; Alonso, C.; Granados, I.; Morellón, M.; Martínez, C.P.; Romero, A.R.; Carrillo, P.; Muñoz, C.Z.; Martín, M.V.; Camarero, L.; Gacia, E.; Puig, M.; Buchaca, T.; Barquín, J. (2023): An evaluation of freshwater monitoring programs in ILTER nodes and mountain national parks: identifying key variables to monitor global change effects. Biodiversity and Conservation, 32, 65–94. https://doi.org/10.1007/s10531-022-02466-x
  62. Portenoy, J.; Hullman, J.; West, J.W. (2017): Leveraging citation networks to visualise scholarly influence over time. Frontiers in Research Metrics and Analytics, 2. https://doi.org/10.3389/frma.2017.00008
  63. Quinton, J.N.; Feiner, P. (2023): Soil erosion on arable land: An unresolved global environmental threat. Progress in Physical Geography: Earth and Environment – Sage Journals, 48(1), 136–161. https://doi.org/10.1177/0309133323121659
  64. Rajak, P.; Ganguly, A.; Adhikary, S.; Bhattacharya, S. (2023): Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research, 14. https://doi.org/10.1016/j.jafr.2023.100776
  65. Reijneveld, J.A.; Oostrum, M.J.V.; Brolsma, K.M.; Fletcher, D.; Oenema, O. (2022): Empower innovations in routine soil testing. Soil fertility management in cropping systems: today’s and future perspectives. Agronomy, 12(1), 191. https://doi.org/10.3390/agronomy12010191
  66. Richer-de-Forges, A.C.; Chen, Q.; Baghdadi, N.; Chen, S.; Gomez, C.; Jacquemoud, S.; Martelet, G.; Mulder, V.L.; Urbina-Salazar, D.; Vaudour, E.; Weiss, M.; Wigneron, J.P.; Arrouays, D. (2023): Remote sensing data for digital soil mapping in French Research—A Review. Remote Sensing, 15(12). https://doi.org/10.3390/rs15123070
  67. Rieder, J.S.; Kneisel, C. (2023): Monitoring spatiotemporal soil moisture variability in the unsaturated zone of a mixed forest using electrical resistivity tomography. Vadose Zone Journal, 22(3). https://doi.org/10.1002/vzj2.20251
  68. Rossel, R.A.V.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; Aïchi, H.; Barthès, B.G.; Bartholomeus, H.M.; Bayer, A.D.; Bernoux, M.; Böttcher, K.; Brodský, L.; Du, C.W.; Chappell, A.; Fouad, Y.; Ji, W. (2016): A global spectral library to characterise the world’s soil. Earth-Science Reviews, 155, 198–230. https://doi.org/10.1016/j.earscirev.2016.01.012
  69. Saha, H.N.; Roy, R.; Chakraborty, M.; Sarkar, C. (2021): IoT-Enabled agricultural system application, challenges and security issues. Agricultural informatics: Automation using the IoT and machine learning. International Journal of Communication Systems. https://doi.org/10.1002/9781119769231.ch11
  70. Sahbeni, G.; Ngabire, M.; Musyimi, P.K.; Székely, B. (2023): Challenges and opportunities in remote sensing for soil salinization mapping and monitoring: A Review. Remote Sensing, 15(10). https://doi.org/10.3390/rs15102540
  71. Sandström, U. (2009): Research quality and diversity of funding: A model for relating research money to output of research. Scientometrics, 79(2), 341–349. http://dx.doi.org/10.1007/s11192-009-0422-2
  72. Schotten, M.; el Aisati, M.; Meester, W.J.N.; Steiginga, S.; Ross, C.A. (2017): A Brief History of Scopus: The World’s Largest Abstract and Citation Database of Scientific Literature, Research Analytics, 31–58. http://dx.doi.org/10.1201/9781315155890-3
  73. Seaton, F.M.; Barrett, G.; Burden, A.; Creer, S.; Fitos, E.; Garbutt, A.; Griffiths, R.I.; Henrys, P.; Jones, D.L.; Keenan, P.; Keith, A. (2020): Soil health cluster analysis based on national monitoring of soil indicators. European Journal of Soil Science, 72(6), 2414–2429. https://doi.org/10.1111/ejss.12958
  74. Silveira, M.L.; Kohmann, M.M. (2020): Chapter 3 - Maintaining soil fertility and health for sustainable pastures. Management Strategies for Sustainable Cattle Production in Southern Pastures, 35–58. https://doi.org/10.1016/B978-0-12-814474-9.00003-7
  75. Singh, C.A.; Singh, B.H.; Singh, G.J.; Raman, K.; Dharam, B. (2023): Exploring the application sphere of electrical discharge machining in composite materials considering surface features: a content analysis. International Journal on Interactive Design and Manufacturing, 17(5), 2095–2114. https://doi.org/10.1007/s12008-022-01060-3
  76. Singh, J.; Singh, G.; Gupta, N. (2023): Balancing phosphorus fertilisation for sustainable maize yield and soil test phosphorus management: A long-term study using machine learning. Field Crops Research, 304, 109169. https://doi.org/10.1016/j.fcr.2023.109169
  77. Singh, K.; Singh, D.; Toor, A.S.; Choudhary, O.P. (2023): Improvement in soil fertility under long-term intensive irrigated agriculture Punjab (North-west India) scenario. Journal of Environmental Biology, 44(2), 229–237. http://dx.doi.org/10.22438/jeb/44/2/MRN-4023
  78. Sohoulande, C.D.D.; Szogi, A.A.; Stone, K.C.; Sigua, G.C.; Martin, J.H.; Shumaker, P.D.; Bauer, P.J. (2022): Evaluation of phosphorus runoff from sandy soils under conservation tillage with surface broadcasted recovered phosphates. Journal of Environmental Management, 328, 117005. https://doi.org/10.1016/j.jenvman.2022.117005
  79. Song, L.; Zhang, J.; Ma, D.; Fan, Y.; Lai, R.; Tian, W.; Zhang, Z.; Ju, J.; Xu, H. (2022): A bibliometric and knowledge-map analysis of macrophage polarisation in Atherosclerosis from 2001 to 2021. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.910444.
  80. Tekli, J. (2016): An overview on xml semantic disambiguation from unstructured text to semi-structured data: Background, Applications, and Ongoing Challenges. IEEE Transactions on Knowledge and Data Engineering, 28(6), 1383–1407. https://doi.org/10.1109/TKDE.2016.2525768
  81. Tiwari, T.; Sharma, S.; Singh, K.K.; Sachan, R. (2023): Importance of soil testing in sustainable agriculture. European Society for Medical Oncology, 173–185. https://www.researchgate.net/publication/374144662
  82. Vanino, S.; Pirelli, T.; Bene, D.C.; Bøe, F.; Castanheira, N.; Chenu, C.; Cornu, S.; Feiza, V.; Fornara, D.; Heller, O.; Kasparinskis, R.; Keesstra, S.; Lasorella, M.V.; Madenoğlu, S.; Meurer, K.H.E.; O'Sullivan, L.; Peter, N.; Piccini, C.; Siebielec, G.; Smreczak, B.; Farina, R. (2023): Barriers and opportunities of soil knowledge to address soil challenges: Stakeholders’ perspectives across Europe. Journal of Environmental Management, 325(B). https://doi.org/10.1016/j.jenvman.2022.116581
  83. Vereecken, H.; Schnepf, A.; Hopmans, J.W.; Javaux, M.; Roose, T.; Vanderborght, J.; Young, M.H.; Amelung, W.; Aitkenhead, M.; Allison, S.D.; Assouline, Baveye, P.; Berli, M.; Brüggemann, N.; Finke, P.; Flury, M.; Gaiser, T.; Govers, G.; Ghezzehei, T.; Hallett, P.; Franssen, H.H.J.; Heppell, J.; Horn, R.; Huisman, J.A.; Jacques, D.; Jonard, F.; Kollet, S.; Lafolie, F.; Lamorski, K.; Leitner, D.; McBratney, A.; Minasny, B.; Montzka, C.; Nowak, W.; Pachepsky, Y.; Padarian, J.; Romano, N.; Roth, K.; Rothfuss, Y.; Rowe, E.C.; Schwen, A.; Simunek, J.; Tiktak, A.; Dam, J.V.; Zee, S.E.A.T.M.; Vogel, H.J.; Vrugt, J.A.; Wöhling, T.; Young, I.M. (2016): Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone Journal, 15(5), 1–57. https://doi.org/10.2136/vzj2015.09.0131
  84. Vogeler, I.; Sharp, J.; Cichota, R.; Lilburne, L. (2022): Sensitivity analysis of soil parameters in the Agricultural Production Systems Simulator (APSIM). Soil Research, 61(2), 176–186. https://doi.org/10.1071/SR22110
  85. Wade, J.; Beetstra, M.A.; Hamilton, M.L.; Culman, S.W.; Margenot, A.J. (2021): Soil health conceptualization differs across key stakeholder groups in the Midwest. Soil and Water Conservation Society. Journal of Soil and Water Conservation, 76(6), 527–533. https://doi.org/10.2489/jswc.2021.02158
  86. Wang, X.; Gong, X.; Li, X.; Sun, S.; Dang, K.; Feng, B. (2022): Microbial nutrient limitation in rhizosphere soils of different food crop families: Evidence from ecoenzymatic stoichiometry. Land Degradation & Development, 34(4), 1019–1034. https://doi.org/10.1002/ldr.4513.
  87. Weaver, D.; Summers, R.; Neuhaus, A. (2022): Agronomic soil tests can be used to estimate dissolved reactive phosphorus loss. Soil Research, 61(7), 627–646. https://doi.org/10.1071/SR22167
  88. Weiss, M.; Jacob, F.; Duveiller, G. (2020): Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236. https://doi.org/10.1016/j.rse.2019.111402
  89. Williams, G.; Lecakes, G.D.; Almon, A.; Koutsoubis, N.; Naddeo, K.; Kiel, T.; Ditzler, G.; Bouaynaya, N.C. (2023): "DyViR: dynamic virtual reality dataset for aerial threat object detection" in Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications. The International Society for Optical engineering, 12529. https://doi.org/10.1117/12.2663417
  90. Wilson, E.M.; Li, T.; Fusco, N.; Dickerson, K. (2018): Practical guidance for using multiple data sources in systematic reviews and meta‐analyses (with examples from the MUDS study). Research Synthesis Methods, 9(1), 2–12. https://doi.org/10.1002/jrsm.1277
  91. Xiao, Y.; Yu, W.; Zheng, J.; Cheng, L.; Ding, X.; Qiao, L.; Wu, X.; Ma, J. (2023): Bibliographic insights in advances of Chordoma: Global Trends and Research Development in the Last Decade. Orthopaedic Surgery, 15(10), 2505–2514. https://doi.org/10.1111/os.13831
  92. Xu, Y.; Lyu, J.; Liu, H.; Xue, Y. (2022). A bibliometric and visualized analysis of the global literature on black soil conservation from 1983–2022 based on CiteSpace and VOSviewer. Agronomy, 12(10), 2432. https://doi.org/10.3390/agronomy12102432
  93. Ying, D.; Chen, X.; Hou, J.; Zhao, F.; Li, P. (2023): Soil properties and microbial functional attributes drive the response of soil multifunctionality to long-term fertilization management. Applied Soil Ecology, 192, 105095. https://doi.org/10.1016/j.apsoil.2023.105095
  94. Zhang, X.; Zijian, L. (2023): Generalizable consistency of soil quality standards for pesticides: Modeling perspectives. Soil and Environmental Health, 1(3), 100031. https://doi.org/10.1016/j.seh.2023.100031
  95. Zhang, Y.; Nachimuthu, G.; Mason, S.; McLaughlin, M.J.; McNeill, A.; Bell, M.J. (2017): Comparison of soil analytical methods for estimating wheat potassium fertilizer requirements in response to contrasting plant K demand in the glasshouse. Scientific Reports, 7(11391). https://doi.org/10.1038/s41598-017-11681-4