Articles

Pathogenic fungal pathogens and diseases: a mini review of effects on maize production

Published:
2025-12-02
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Osman, M., Kuunya, R. ., Tamas, A. ., & Tamas, R. . (2025). Pathogenic fungal pathogens and diseases: a mini review of effects on maize production. Acta Agraria Debreceniensis, 2, 93-102. https://doi.org/10.34101/actaagrar/2/15262
Received 2024-12-12
Accepted 2025-10-02
Published 2025-12-02
Abstract

Maize, the most important cereal globally in terms of nutrition and income, is highly susceptible to biotic stresses caused by various pathogens, including fungi, bacteria, viruses, nematodes, and parasitic plants. This review gives an account of the epidemiology, diversity, and effect of fungal diseases on maize, with a focus on common pathogens, namely Ustilago sp. and Fusarium sp. Additionally, the review explores the major contributors to the pathogen and disease development, namely: soil quality, temperature, and humidity. Clarity is made herein about the damages and effects on maize growth, including development, yield, and grain quality, with marked economic losses recorded annually. The increasing threat of climate change escalates the dangers, pointing out the urgency for sustainable control strategies of the diseases. Conventional methods of using chemicals have been rendered inadequate for maize fungal disease control, underscoring the need for applying biopesticides and natural products obtained from microorganisms as innovative, remediation strategies. Together with these innovations are biocontrol agents that provide better solutions for reducing the reliance on chemical formulations as well as strengthening a healthier agricultural environment. Finally, a comprehensive understanding of the interaction between maize pathogens and environmental determinants is vital for the development of more effective integrated pest management strategies to enhance maize productivity and subsequent food safety.

References
  1. Ako, M.; Schulthess, F.; Gumedzoe, M.Y.D.; Cardwell, K.F. (2003): The effect of Fusarium verticillioides on oviposition behaviour and bionomics of lepidopteran and coleopteran pests attacking the stem and cobs of maize in West Africa. Entomol. Exp. Appl. 106:201–210.
  2. Almeida, F.; Rodrigues; M.L.; Coelho, C. (2019): The Still Underestimated Problem of Fungal Diseases Worldwide. Front. Microbiol. 10:214. https://doi.org/10.3389/fmicb.2019.00214
  3. Aydogdu, M.; Boyraz, N. (2011): Effects of nitrogen and organic fertilization on corn smut (Ustilago maydis (DC) Corda.). African Journal of Agricultural Research, 6(19), 4539–4543. https://doi.org/10.5897/AJAR10.1166
  4. Babu, B.K.; Saxena, A.K.; Srivastava, A.K.; Arora, D.K. (2007): Identification and detection of Macrophomina phaseolina by using species-specific oligonucleotide primers and probe. Mycologia, 99(6), 797–803. https://doi.org/10.1080/15572536.2007.11832511
  5. Biswal, A.K.; Alakonya, A.E.; Mottaleb, K.A.; Hearne, S.J.; Sonder, K.; Molnar, T.L.; Jones, A.M.; Pixley K.V.; Prasanna, B.M. (2022): Maize Lethal Necrosis disease: review of molecular and genetic resistance mechanisms, socio-economic impacts, and mitigation strategies in sub-Saharan Africa. BMC Plant Biology 22:542. https://doi.org/10.1186/s12870-022-03932-y
  6. Bottalico, A. (1998): Fusarium diseases of cereals: Species complex and related mycotoxin profiles in Europe. Journal of Plant Pathology, 80: 85–103.
  7. Bruns, H.A. (2017): Southern corn leaf blight: a story worth retelling. Agronomy Journal, 109(4), 1218–1224. https://doi.org/10.2134/agronj2017.01.0006
  8. Chen, J.; Zhou, L.; Din, I. U.; Arafat, Y., Li, Q.; Wang, J. et al. (2021): Antagonistic activity of Trichoderma spp. against Fusarium oxysporum in rhizosphere of Radix pseudostellariae triggers the expression of host defense genes and improves its growth under long-term monoculture system. Front. Microbiol. 12:579920. https://doi.org/10.3389/FMICB.2021.579920.
  9. Chen, X.; Abdallah, M.F.; Landschoot, S.; Audenaert, K.; De Saeger, S.; Chen, X.; Rajkovic, A. (2023): Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize. Toxins, 15, 577. https://doi.org/10.3390/toxins15090577.
  10. Chilaka, C.A.; Obidiegwu, J.E.; Chilaka, A.C.; Atanda, O.O.; Mally, A. (2022): Mycotoxin Regulatory Status in Africa: A Decade of Weak Institutional Efforts. Toxins, 14, 442. https://doi.org/10.3390/ toxins14070442
  11. Cimmyt (2004): The Cimmyt Maize Program 2004. Maize diseases: A guide for field identification. 4th edition. Mexico, D.F., International Maize and Wheat Improvement Centre (CIMMYT).
  12. Degani, O. (2021): A review: late wilt of maize—the pathogen, the disease, current status, and future perspective. J. Fungi. 7(11), 989; https://doi.org/10.3390/jof7110989.
  13. Degani, O. (2022): Control Strategies to Cope with Late Wilt of Maize. Pathogens, 11, 13. https://doi.org/10.3390/pathogens11010013.
  14. Degani, O.; Gordani, A. (2022): New Antifungal Compound, 6-Pentyl-α-Pyrone, against the Maize Late Wilt Pathogen, Magnaporthiopsis maydis. Agronomy, 12, 2339. https://doi.org/10.3390/agronomy12102339.
  15. Djawu, B.P. (2017): Compost and nitrogen fertilizer on maize (Zea mays L) growth and yield and residual effects on cowpea (Vigna unguiculata (L) Walp) in a rotation. Thesis. University of Ghana.
  16. Drori, R.; Sharon, A.; Goldberg, D.; Rabinovitz, O.; Levy, M.; Degani, O. (2013): Molecular diagnosis for Harpophora maydis, the cause of maize late wilt in Israel. Phytopathol. Mediterr. 52, 16–29.
  17. El-Shenawy, A.A.; Hassan, M.A.A.; El-Haress, S.M.A.; Abd-Elaziz, M.A.A. (2022): Assessment of Combining Ability in Some Newly Maize Inbred Lines for Grain Yield and Late Wilt Resistance. J. Plant Prod. , 13, 45–48.
  18. Falade, T.D.O.; Neya, A.; Bonkoungou, S.; Dagno, K.; Basso, A.; Senghor, A.L.; Atehnkeng, J.; Ortega-Beltran, A.; Bandyopadhyay, R. (2022): Aflatoxin Contamination of Maize, Groundnut, and Sorghum Grown in Burkina Faso, Mali, and Niger and Aflatoxin Exposure Assessment. Toxins, 14, 700. https://doi.org/10.3390/toxins1410070
  19. Fazal, ur R.; Muhammad, A.; Maria, K.; Nageen, N.; Muhammad, G.H.; Haroon, I.; Muhammad, A.I.; Gulfam, Y.; Rohoma, T.; Usama, A. (2021): Seed-borne fungal diseases of maize (zea mays l.): a review. Agrinula: Jurnal Agroteknologi dan Perkebunan vol. 4 (1): 43–60. https://doi.org/10.36490/agri.v4i1.123.
  20. Ferrigo, D.; Raiola, A.; Causin, R. (2016): Fusarium Toxins in Cereals: Occurrence, Legislation, Factors Promoting the Appearance and Their Management. Molecules, 21, 627; https://doi.org/10.3390/molecules21050627
  21. Gordani, A.; Hijazi, B.; Dimant, E.; Degani, O. (2023): Integrated Biological and Chemical Control against the Maize Late Wilt Agent Magnaporthiopsis maydis. Soil Syst. 7, 1. https://doi.org/10.3390/soilsystems7010001.
  22. Gupta, G.K.; Sharma, S.K.; Ramteke, R. (2012): Biology, Epidemiology and Management of the Pathogenic Fungus Macrophomina phaseolina (Tassi) Goid with Special Reference to Charcoal Rot of Soybean (Glycine max (L.) Merrill). J. Phytopathol., 160, 167–180, https://doi.org/10.1111/j.1439-0434.2012.01884.x
  23. Gurjar, M.S.; Saharan, M.S.; Aggarwal Rashmi (2018): Integrated Disease Management Practices for Sustainable Agriculture under ICM Approach. Integrated crop management practices (ed:Anil K. Choudhary R.S. Bana Vijay Pooniya). ICAR–Indian Agricultural Research Institute, New Delhi.113–120.
  24. Harlapur, S.I.; Khokhar, M.K.; Hooda, K.S. (2023): Epidemiology and management of charcoal rot of maize caused by Macrophomina phaseolina (Tassi.) Goid. Ecobiology, Pathology and Management, 83–89.
  25. International Grains Council. International Grains Council Grain Market Report Five-Year Baseline Projections of Supply and Demand for Wheat, Maize (Corn), Rice and Soyabeans to 2023/24 March 2019; International Grains Council: London, UK, pp. 1–4. Available online: http://www.igc.int/en/downloads/gmrsummary/gmrsumme.pdf (accessed on 15 January 2020).
  26. Jirak-Peterson, J.C.; Esker, P.D. (2011): Tillage, crop rotation, and hybrid effects on residue and corn anthracnose occurrence in Wisconsin. Plant Disease, 95(5), 601–610. https://doi.org/10.1094/PDIS-11-10-0837
  27. Khan, N.; Maymon, M.; Hirsch, A.M. (1959): Combating Fusarium Infection Using Bacillus-Koehler B Corn ear rots in Illinois. University of Illinois Agriculture Experiment Station Bulletin 639.
  28. Khan, R.; Anwar, F.; Ghazali, F.M. (2024): A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon, 10(8) https://doi.org/10.1016/j.heliyon.2024.e28361
  29. Khokhar, M.; Hooda, K.; Sharma, S.; Singh, V. (2014): Post Flowering Stalk Rot Complex of Maize - Present Status and Future Prospects. Maydica electronic publication. 59: 226–242.
  30. Khoury, W.; Makkouk (2010): Integrated plant disease management in developing countries. Journal of Plant Pathology 92(4).
  31. Kleczewski, N. (2014): Anthracnose Leaf Blight and Stalk Rot of Corn. University of Delaware Cooperative Extension, Fact Sheet S107.
  32. Kramer, J.; Ozkaya, O.; Kummerli, R. (2020): Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163. https://doi.org/10.1038/s41579-019-0284-4
  33. Logrieco, A.; Moretti, A.; Altomare, C.; Bottalico A and Carbonell Torres, E. (1993): Occurrence and toxicity of Fusarium subglutinans from Peruvian maize. Mycopathologia, 122: 185–190.
  34. Logrieco, A.; Mule, G.; Moretti, A.; Bottalico, A. (2002): Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. European Journal of Plant Pathology, 108: 597–609
  35. Marburger, D.; Venkateshwaran, M.; Conley S.; Esker, P.; Lauer, J.; and Ané, J. (2015): Crop rotation and management effect on Fusarium spp. Populations, Crop Science, 55: 365–376. https://doi.org/10.2135/CROPSCI2014.03.0199
  36. Matos, D.; Cardoso, P.; Almeida, S.; Figueira, E. (2024): Challenges in maize production: A review on late wilt disease control strategies. Fungal Biology Reviews. 50. 10.1016/j.fbr.2024.100396
  37. Mehl, H.L.; Cotty, P.J. (2010): Variation in Competitive Ability Among Isolates of Aspergillus flavus from Different Vegetative Compatibility Groups During Maize Infection. Phytopathology, Vol. 100, No. 2.
  38. Merkevičiūte-Venslovė, L.; Venslovas, E.; Mankevičienė, A.; Šlepetienė, A.; Cesevičienė, J. (2023): Effect of Ustilago maydis on the Nutritive Value and Aerobic Deterioration of Maize Silage. Agronomy, 13, 111. https://doi.org/10.3390/agronomy13010111
  39. Mesterházy, Á.; Varga, M.; Tóth, B.; Kótai, C.; Bartók, T.; Véha, A.; Acs, K.; Vágvölgyi, C.; Lehoczki-Krsjak, S. (2017): Reduction of deoxynivalenol (DON) contamination by improved fungicide use in wheat, Part 2. farm scale tests with different nozzle types and updating the integrated approach, European Journal of Plant Pathology, 151: 1–20. https://doi.org/10.1007/s10658-017-1347-x
  40. Mielniczuk, E.,; Skwaryło-Bednarz, B. (2020): Fusarium head blight, mycotoxins and strategies for their reduction, Agronomy, 10(4): 509. https://doi.org/10.3390/agronomy10040509
  41. Miller, J.D. (1994): Epidemiology of Fusarium diseases of cereals. In: Miller JD and Trenholm HL (eds) Mycotoxins in Grain: Compounds other than Aflatoxin (pp 19–36) Eagan Press, St. Paul, MN, USA.
  42. Mitrović, I.; Čanak, P.; Tančić Živanov, S.; Farkaš, H.; Vasiljević, M.; Ćujić, S.; Zorić, M.; Mitrović, B. (2025): Trichoderma harzianum in Biocontrol of Maize Fungal Diseases and Relevant Mycotoxins: From the Laboratory to the Field. J. Fungi, 11, 416. https://doi.org/ 10.3390/jof11060416
  43. Mohan, S.K.; Hamm, P.B.; Clough, G.H.; du Toit, L.J. (2013): “Corn smuts” Oregon State University, A Pacific Northwest Extension. https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw647.pdf
  44. Molinero-Ruiz, M.L.; Melero-Vara, J.M.; Mateos, A. (2011): Cephalosporium maydis, the cause of late wilt in maize, a pathogen new to Portugal and Spain. Plant Dis., 94, 379.
  45. Mueller, D.S.; Wise, K.A.; Sisson, A.J.; Allen, T.W.; Bergstrom, G.C.; Bosley, D.B.; Bradley, C.A.; Broders, K.D.; Byamukama, E.; Chilvers, M.I.; Collins, A.; Faske, T.R.; Friskop, A.J.; Heiniger, R.W.; Hollier, C.A.; Hooker, D.C.; Isakeit, T.; Jackson-Ziems, T.A.; Jardine, D.J.; Kelly, H.M.; Kinzer, K; Koenning, S.R.; Malvick, D.K.; McMullen, M.; Meyer, R.F.; Paul, P.A.; Robertson, A.E.; Roth, G.W.; Smith, D.L.; Tande, C.A.; Tenuta, A.U.; Vincelli, P.; Warner, F. (2016): Corn yield loss estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Progress, 17(3), 211–222. https://doi.org/10.1094/PHP-RS-16-0030
  46. Mukanga, M.; Derera, J.; Tongoona, P.; Laing, M.D. (2010): A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. International Journal of Food Microbiology, 141(3), 213–221. https://doi.org/10.1016/j.ijfoodmicro.2010.05.011
  47. Nsibo, D.L.; Barnes, I.; Berger, D.K. (2024): Recent advances in the population biology and management of maize foliar fungal pathogens Exserohilum turcicum, Cercospora zeina and Bipolaris maydis in Africa. Front. Plant Sci. 15:1404483. https://doi.org/10.3389/fpls.2024.1404483
  48. Ons, L.; Dany, B.; Thevissen, K.; Cammue, B.P.A. (2020): Combining Biocontrol Agents with Chemical Fungicides for Integrated Plant Fungal Disease Control. Microorganisms, 8: 1930. https://doi.org/10.3390/microorganisms8121930
  49. Pataky, J.; Snetselaar, K. (2006): Common smut of corn (Syn. boil smut, blister smut). Plant Disease Profiles, The Plant Health Instructor. Volume 6. https://doi.org/10.1094/PHI-I-2006-0927-01
  50. Pecsi, S.; Nemeth, L. (1998): Appearance of Cephalosporium maydis Samra Sabet and Hingorani in Hungary. Meded. Fac. Landbouwkd. En Toegep. Biol. Wet. Univ. Gent., 63, 873–877.
  51. Pereira, P.; Nesci A.; Etcheverry, M. (2009): Efficacy of bacterial seed treatments for the control of Fusarium verticillioides in maize, Bio. Control, 54:103–111. https://doi.org/10.1007/s10526-007-9148-3
  52. Programa de Maíz, Centro Internacional de Mejoramiento del Maíz y Trigo (CIMMYT). (2004): Enfermedades del Maíz: Una Guía Para su Identificación en el Campo. 4th ed. Centro Internacional de Mejoramiento del Maíz y Trigo (CIMMYT), México, D.F, p. 118.
  53. Rahman, S.F.S. AB.; Singh, E.; Pieterse, C.M.J.; Schenk, P.M. (2018): Emerging microbial biocontrol strategies for Plant Pathogens. Plant Science, v. 267,. 102–111. DOI https://doi.org/10.1016/j.plantsci.2017.11.012
  54. Rehman, F.; Adnan, M.; Kalsoom, M.; Naz, N.;, Husnain, M.G.; Ilahi, H.; Ilyas, M.A.; Yousaf, G.; Tahir, R.; Ahmad, U. (2021): Seed-Borne Fungal Diseases of Maize (Zea mays L.): A Review. Agrinula: Jurnal Agroteknologi Dan Perkebunan, 4(1), 43–60. https://doi.org/10.36490/agri.v4i1.123
  55. Robertson-Hoyt, L.A.; Betrán J.; Payne, G.A.; White, D.G.; Maragos T.I.M.; Molnár, T.L.; Holland, J.B. (2007): Relationships Among Resistances to Fusarium and Aspergillus Ear Rotsand Contamination by Fumonisin and Aflatoxin in Maize. Phytopathology, 97:311–317. https://doi.org/10.1094/PHYTO-97-3-0311
  56. Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. (2019): The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3 (3), 430–439. https://doi.org/10.1038/s41559-018-0793-y
  57. Schieber, E. (1965): Distribution of Puccinia sorghi and P. polysora in Africa and pathogenecity of these species on corn lines with Latin American germplasm. Phytopathology, 55: 1074 (Abstract).
  58. Smith, D.R.; White, D.G. (1988): Diseases of corn. In: Sprague GF and Dudley JW (eds) Corn and Corn Improvement, 3rd edn (pp 687–766) Agronomy Series No. 18. Am. Soc. Agronomy, Madison, WI, USA
  59. Stukenbrock, E.; Gurr, S. (2023): Address the growing urgency of fungal disease in crops. Nature 617, 31–34. https://doi.org/10.1038/d41586-023-01465-4
  60. Subedi, S.A. (2015): Review on important maize diseases and their management in Nepal. J. Maize Res. Dev., 1, 28–52.
  61. Tesso, T.T.; Perumal, R.; Little, C.R.; Adeyanju, A.; Radwan, G.L.; Prom, L.K.; Magill, C.W. (2012): Sorghum pathology and biotechnology-a fungal disease perspective: Part II. Anthracnose, stalk rot, and downy mildew. European Journal of Plant Science and Biotechnology, 6(Special Issue 1), 31–44.
  62. Thompson, M.E.H.; Raizada, M.N. (2018): Fungal Pathogens of Maize Gaining Free Passage Along the Silk Road. Pathogens, 7:81. https://doi.org/10.3390/pathogens7040081
  63. Wang, J.H; Li, H.P.; Zhang, J.B.; Wang, B.T.; Liao, Y.C. (2014): First report of Fusarium maize ear rot caused by Fusarium kyushuense in China. Plant Dis, 98:279. Disease notes, http://dx.doi.org/10.1094/PDIS-05-13-0558-PDN
  64. Xu, Y.; Zhao, B.; Zhai, Y.; Chen, Q.; Zhou, Y. (2021): Maize diseases identification method based on multi-scale convolutional global pooling neural network. IEEE Access 9, 27959–27970.
  65. Yassin, M.T.; Mostafa, A.A.; Al-Askar, A.A.; Sayed, S. R.M.; Rady, A.M. (2021): Antagonistic activity of Trichoderma harzianum and Trichoderma viride strains against some fusarial pathogens causing stalk rot disease of maize, in vitro. Journal of King Saud University – Science 33:101363. https://doi.org/10.1016/j.jksus.2021.101363.
  66. Zhan, B.-h.; Yang, X.-l.; Lommel, S.A.; Zhou, X.-p. (2022): Recent progress in maize lethal necrosis disease: From pathogens to integrated pest management. Journal of Integrative Agriculture, 21(12): 3445–3455.
  67. Zhang, F., Yuan, J., Yang, X., Cui, Y., Chen, L., Ran, W., Shen, Q., (2013): Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization. Plant Soil, 368 (1-2), 433–444.
  68. Zou, K.K.; Li Y.; Zhang W.J.; Jia Y.F.; Wang, Y.; Ma, Y.T.; Lv, X.L.; Xuan Y.H.; Du W.L. (2022): Early infection response of fungal biotroph Ustilago maydis in maize. Front. Plant Sci.; 13:970897. https://doi.org/10.3389/fpls.2022.970897
  69. Zúñiga-Silvestre, C.A., De-León-García-de-Alba, C.; Ayala- Escobar, V.; González-Hernández, V.A. (2020): Induced Resistance to Common Rust (Puccinia sorghi), in Maize (Zea Mays). Emirates Journal of Food and Agriculture, vol. 32, no. 1, 11–18., doi:10.9755/ejfa.2020.v32.i1.2053.