Articles

Comparative study of newly-bred black locust clones with regard to photosynthetic rate and water use efficiency: early evaluation

Published:
June 5, 2023
Authors
View
Keywords
License

Copyright (c) 2023 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Ábri, T., & Csajbók, J. (2023). Comparative study of newly-bred black locust clones with regard to photosynthetic rate and water use efficiency: early evaluation. Acta Agraria Debreceniensis, 1, 5-10. https://doi.org/10.34101/actaagrar/1/12256
Received 2023-01-03
Accepted 2023-03-23
Published 2023-06-05
Abstract

Black locust (Robinia pseudoacacia L.) is one of the most important tree species in Hungary, due to its positive economic impacts. Research to increase its yield, improve its stem quality and enhance its drought tolerance has been ongoing since the 1960s. Of the current research works in this field, the clone trial of the Forest Research Institute, University of Sopron, established in 2020 in the Nyírség region, is worth highlighting. In this experiment 4 newly-bred clones and a state-approved black locust cultivar ('Üllői') are being tested. In the summer of 2022, ‘on site’ measurements of assimilation parameters – net assimilation (An), transpiration (Tr) – were carried out using the LI-6800 portable photosynthesis system. From the data obtained, the water use efficiency (WUE) was calculated. The results of the statistical analysis (Kruskal-Wallis H test) have shown significant differences (p < 0.05) between the clones for all three parameters (An, Tr, WUE) tested. The NK2 clone has performed the highest value for all the parameters studied. However, no significant differences were found between clones NK2 and PL040 for Tr or between NK2 and control ('Üllői') for WUE. Studies of this kind contribute to the improvement of black locust growing through the production and selection of cultivars, which are relatively resistant to the negative effects (drought) of climate change.

References
  1. Ábri, T.–Keserű, Z.–Rásó, J.–Rédei, K. (2021): Stand structure and growth of Robinia pseudoacacia ‘Jászkiséri’–‘Jászkiséri’black locust. J. For. Sci., 67, 489–497, https://doi.org/10.17221/57/2021–JFS
  2. Ábri, T.–Keserű, Z.–Borovics, A.–Rédei, K.–Csajbók, J. (2022): Comparison of Juvenile, Drought Tolerant Black Locust (Robinia pseudoacacia L.) Clones with Regard to Plant Physiology and Growth Characteristics in Eastern Hungary: Early Evaluation. Forests, 13(2), 292, https://doi.org/10.3390/f13020292
  3. Ciuvăț, A.L.–Abrudan, I.V.–Ciuvăț, C.G.–Marcu, C.–Lorenț, A.–Dincă, L.–Bartha, S. (2022): Black Locust (Robinia pseudoacacia L.) in Romanian Forestry. Diversity, 14, 780, https://doi.org/10.3390/d14100780
  4. Farquhar, G.D.–Sharkey, T.D. (1982): Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol., 33(1), 317–345.
  5. Flexas, J.–Niinemets, Ü.–Gallé, A.–Barbour, M.M.–Centritto, M.–Diaz-Espejo, A.–Douthe, C.–Galmés, J.–Ribas-Carbo, M.–Rodriguez, P.L.–Rosselló, F.–Soolanayakanahally, R.–Tomas, M.–Wright, I.J.–Farquhar, G.D.–Medrano, H. (2013): Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth. Res., 117, 45–59, https://doi.org/10.1007/s11120-013-9844-z
  6. Grünewald, H.–Böhm, C.–Quinkenstein, A.–Grundmann, P.–Eberts, J.–von Wühlisch, G. (2009): Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenerg. Res., 2, 123–133, https://doi.org/10.1007/s12155-009-9038-x
  7. Hatfield, J.L.–Dold, C. (2019): Water-use efficiency: advances and challenges in a changing climate. Front. Plant Sci., 10, 103.
  8. Hlásny, T.–Mátyás, C.–Seidl, R.–Kulla, L.–Merganicova, K.–Trombik, J.–Dobor, L.–Barcza, Z.–Konopka, B. (2014): Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesn. Cas. For. J., 60, 5–18, https://doi.org/10.2478/forj-2014-0001
  9. Hungarian Central Statistical Office (HCSO): https://www. https://www.ksh.hu/stadat_files/kor/hu/kor0056.html (in Hungarian) (accessed on 04.01.2022)
  10. Hungarian Meteorological Service (HMS): https://odp.met.hu/climate/homogenized_data/station_data_series/from_1901/ (accessed on 22.11.2022)
  11. Hungarian National Land Centre (NLC). Available online: https://nfk.gov.hu/Adatbazisok_linkjei___Erdeszet_news_305 (accessed on 12.12.2022).
  12. Huntley, J.C. (1990): Robinia pseudoacacia L. black locust. Silv. N. Am., 2, 755–761.
  13. Keenan, R.J. (2015): Climate change impacts and adaptation in forest management: A review. Ann. For. Sci., 72, 145–167, https://doi.org/10.1007/s13595-014-0446-5
  14. Keresztesi B. (1988): The Black Locust; Akadémiai Kiadó: Budapest, Hungary, 196.
  15. Keserű, Z.–Borovics, A.–Ábri, T.–Rédei, K.–Lee, I.H.–Lim, H. (2021): Growing of Black Locust (Robinia pseudoacacia L.) Candidate Cultivars on Arid Sandy Site. Acta Silv. Lign. Hung., 17, 51–61, https://doi.org/10.37045/aslh-2021-0004
  16. LI–COR, Inc. Li–6800 Portable Photosynthesis System, Software Version 1.2; LI–COR, Inc.: Lincoln, NE, USA, 2017.
  17. Lyu, J.–He, Q.Y.–Chen, Q.W.–Cheng, R.R.–Li, G.–Otsuki, K.–Yamanaka, N.–Du, S. (2022): Distinct transpiration characteristics of black locust plantations acclimated to semiarid and subhumid sites in the Loess Plateau, China. Agric. Water Manag., 262, 107402, https://doi.org/10.1016/j.agwat.2021.107402
  18. Mantovani, D.–Veste, M.–Freese, D. (2014a): Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water-use efficiency. N.Z. J. For. Sci., 44, 29, https://doi.org/10.1186/s40490-014-0029-0
  19. Mantovani, D.–Veste, M.–Freese, D. (2014b): Effects of drought frequency on growth performance and transpiration of young black locust (Robinia pseudoacacia L.). Int. J. For. Res., 1–11, https://doi.org/10.1155/2014/821891
  20. Mátyás, C.–Berki, I.–Bidló, A.–Csóka, G.–Czimber, K.–Führer, E.–Gálos, B.–Gribovszki, Z.–Illés, G.–Hirka, A.–Somogyi, Z. (2018): Sustainability of forest cover under climate change on the temperate-continental xeric limits. Forests, 9(8), 489, https://doi.org/10.3390/f9080489
  21. McDowell, N.G.–Allen, C.D. (2015): Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Chang., 5, 669–672, https://doi.org/10.1038/nclimate2641
  22. Meng, F.–Peng, M.–Pang, H.–Huang, F. (2014): Comparison of photosynthesis and leaf ultrastructure on two black locust (Robinia pseudoacacia L.). Biochem. Syst. Ecol., 55, 170–175, https://doi.org/10.1016/j.bse.2014.03.025
  23. Nicolescu, V.N.–Hernea, C.–Bakti, B.–Keserű, Z.–Antal, B.–Rédei, K. (2018): Black locust (Robinia pseudoacacia L.) as a multi-purpose tree species in Hungary and Romania: a review. J. For. Res., 29, 1449–1463, https://doi.org/10.1007/s11676-018-0626-5
  24. Nicolescu, V. N.–Rédei, K.–Mason, W. L.–Vor, T.–Pöetzelsberger, E.–Bastien, J. C.–Brus R.–Benčať T.–Đodan M.–Cvjetkovic B.–Andrašev, S.–La Porta, N.–Lavnyy, V.–Mandžukovski, D.–Petkova, K.–Roženbergar, D.–Wąsik, R.–Mohren, G.M.J.–Monteverdi, M.C.–Musch, B.–Klisz, M.–Perić, S.–Keça, L.–Bartlett, D.–Hernea, C.–Pástor, M. (2020): Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res, 31(4), 1081–1101, https://doi.org/10.1007/s11676-020-01116-8
  25. Puchałka, R.–Dyderski, M.K.–Vítková, M.–Sádlo, J.–Klisz, M.–Netsvetov, M.–Prokopuk, Y.–Matisons, R.–Mionskowski, M.–Wojda, T.–Koprowski, M.–Jagodziński, A.M. (2021): Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Glob. Chang. Biol., 27(8), 1587–1600, https://doi.org/10.1111/gcb.15486
  26. Pethő, M. (1998): A növényélettan alapjai; Akadémiai Kiadó: Budapest, Hungary, 176. (in Hungarian)
  27. Rédei, K.–Osvath–Bujtas, Z.–Veperdi, I. (2008): Black locust (Robinia pseudoacacia L.) improvement in Hungary: A review. Acta Silv. Lign. Hung., 4, 127–132.
  28. Rédei, K.–Csiha, I.–Rásó, J.–Keserű, Z. (2017): Selection of promising black locust (Robinia pseudoacacia L.) cultivars in Hungary. J. For. Sci., 63, 339–343, https://doi.org/10.17221/23/2017-JFS
  29. Sádlo, J.–Vítková, M.–Pergl, J.–Pyšek, P. (2017): Towards site-specific management of invasive alien trees based on the assessment of their impacts: the case of Robinia pseudoacacia. NeoBiota, 35, 1–34, https://doi.org/10.3897/neobiota.35.11909
  30. Szyp-Borowska, I.–Ukalska, J.–Niemczyk, M.–Wojda, T.–Thomas, B.R. (2022): Effects of Water Deficit Stress on Growth Parameters of Robinia pseudoacacia L. Selected Clones under In Vitro Conditions. Forests, 13, 1979, https://doi.org/10.3390/f13121979
  31. Tanner, C.B.–Sinclair, T.R. (1983): Efficient water use in crop production: Research or Re-search? In: Limitations to Efficiency Water Use in Crop Production Limitations to Efficient Water Use in Crop Production; Taylor, H.M., Jordan, W.R. and Sinclair, T.R. (Eds.); American Society of Agronomy: Madison, Wisconsin, USA, pp:1–27.
  32. Vítková, M.–Müllerová, J.–Sádlo, J.–Pergl, J.–Pyšek, P. (2017): Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag., 384, 287–302, https://doi.org/10.1016/j.foreco.2016.10.057
  33. Xu, F.–Guo, W.–Xu, W.–Wang, R. (2010): Effects of water stress on morphology, biomass allocation and photosynthesis in Robinia pseudoacacia seedlings. J. Beijing For. Univ., 32(1), 24–30.