Search

Published After
Published Before

Search Results

  • Cost and profit conditions in the Hungarian intensive apple production
    65-68.
    Views:
    219

    In this study I investigated the cost and profit conditions and the efficiency of intensive, qualitative apple production on the basis of a data collection carried out in ventures of high standard production. I concluded that the intensive apple production has an extremely high cost requirement, the production costs are approximately 1500 to 1600 thousand HUF per hectare. In an average case, a production value of 2000 thousand HUF per hectare may be reached, which may fluctuate in a wide interval during the years. Considering the above mentioned, a net profit of 400 to 500 thousand HUF may be realized in one hectare. It should be highlighted that regarding the present marketing conditions, realizing the appropriate profit may be expected only by producing 30 to 40 tons per hectare yields and 80 to 90% food quality ratio.

  • Fruit drop: The role of inner agents and environmental factors in the drop of flowers and fruits
    13-23.
    Views:
    581

    The basic conditions of fruit set (synchronic bloom, transfer of pollen, etc.) still do decide definitely the fate of the flower (Cano-Medrano & Darnell, 1998) in spite of the best weather conditions (Stösser, 2002). Beyond a set quantity of fruits, the tree is unable to bring up larger load. A system of autoregulation works in the background and causes the drop of a fraction of fruits in spite of the accomplished fertilisation and the equality of physiological precedents (Soltész, 1997). There are also basically genetic agents in action. The further development of fruits maintained on the tree depends mainly on the growing conditions (e.g. water, supply of nutrients, weather adversities, pruning, fruit thinning, biotic damages, etc.), which may cause on their own turn fruit drop especially at the time of approaching maturity.

  • The effect of day and night temperatures on apple skin colour formation
    21-25.
    Views:
    269

    The colour of fruits is considered to be an important quality indicator. Saleability greatly depends on how well covered the colour is of the specific type of fruits. It is a well-known phenomenon by growers that apples get nicer colours in one year while in other years the basically red and green colour cultivars can be differentiated only by morphological characteristic features. Cover colour is one of the phenometric variables and it is a well-known fact that significant differences can be experienced year by year. The experienced oscillation can be the cause of inappropriate water- and nutriment supply, however it can be the result of some kind of plant disease, extremely high or low temperature, setting rate above the average and outstanding fruit density. In the present examination it is postulated that the degree of cover colour is mostly influenced by day and night temperature. Therefore, our study aims to find out whether it is true or not. Cover colour belongs to those phenometric characteristic features, only the final value of which is taken into consideration; due to their nature of establishment or forming time it seems useless to follow closely the change in the time of vegetation. However, determining the start of colouring and knowing the dynamics of full colouring could carry very important information for growers. If it is possible to determine the curve describing the time change of colouring, we have a possibility to estimate it by means of enviroment variables. So it is also possible to model pigmentation in the future. Knowing this, colouring irrigation could be made more efficient in the future. For this, as a first step, it is inevitable to find out what the relationship is between the main meteorogical variables, namely day and night temperature and the difference between day and night temperature, and colour cover. In this study we summarize and show these interrelations.

  • Relationship between several meteorological factors and phenological features of apple cultivars
    13-19.
    Views:
    247

    The trees observed are grown at Ofeherto, Eastern Hungary in the plantation of an assortment (gene bank) with 586 apple cultivars. Each of the cultivars were observed as for their dates of subsequent phenophases, the beginning of bloom, main bloom and the end of bloom over a period between 1984 and 2001. during this period the meteorological data-base keeps the following variables: daily means of temperature (°C), daily maximum temperature (°C), daily minimum temperature (°C), daily precipitation sums (mm), daily sums of sunny hours, daily means of the differences between the day-time and night-time temperatures (°C), average differences between temperatures of successive daily means (°C). Between the 90th and 147th day of the year over the 18 years of observation. The early blooming cultivars start blooming at 10-21April. The cultivars of intermediate bloom start at the interval 20 April to 3 May, whereas the late blooming group start at 2-10 May. Among the meteorological variables of the former autumnal and hibernal periods, the hibernal maxima were the most active factor influencing the start of bloom in the subsequent spring.

  • Microclimatic studies on different aged apple plantations
    7-11.
    Views:
    252

    The purpose of measuring parallel canopy and out of canopy microclimates was to find out in what extent climatic parameters measured in different aged canopis differ from each other and from the values characteristic to out-of-canopi areas. The importance of phytoclimatic researches seems to lie in the fact that if the reactions of fruit trees towards meteorological elements are continuously followed, we have the possibility to provide growers with information. These pieces of information are like defining the optimum time of phitotechnical interventions (summer pruning, sorting sprouts, thinning fruits, etc.), the necessity of applying mulching, defining the method and time of irrigation and applying plant protection activities. By means of phytoclimatic researches, it is possible to react to unfavourable meteorological impacts within a certain extent. It is also possible to successfully reduce the risks of late spring and early autumn frost damage, as well as the risks, content and measure of experienced heat and water stress conditions by finding out about the physical characteristics of the canopis' internal area.