Search

Published After
Published Before

Search Results

  • Left, right, up and downstage: leaves and lateral roots histological trait prospection for drought tolerance in commercial Coffea arabica cultivars
    44-65.
    Views:
    568

    The climate change and water deficit challenges plant producers all over the world, and have consequences to coffee production and quality. In this research we have approached anatomical traits from vegetative organs of 13 Coffea arabica genotypes, selected based on their contrasting behavior to water deficit. Leaf blade, petiole and primary root cross sections were evaluated, and the epidermal, fundamental, and vascular tissues descriptive anatomy, histometric and histochemistry examined. Despite all plants were in the same environment (CEPC/EPAMIG, Patrocínio, MG, Brazil), there were differences among the genotypes and groups of more tolerant and more susceptible accesses. Petiole cross section, vascular tissue and phloem and cambium; and percentage of stele, pericycle and phloem and cambium in primary roots exhibited differences among the contrasting genotypes, highlighting an inborn association of vascular tissue and other features with water deficit resistance. This association was observed in the mild to medium correlations among vascular tissue, epidermis, phloem and cambium in roots and petioles. Possible relation of qualitative traits such as the lignification of root epidermis, lipidic substances in outer cortical cell layers, and area/number of cell layers in the cortex are approached as possible traits in the seek for water deficit tolerance in C. arabica.

  • Ultrastructural and biochemical aspects of normal and hyperhydric eucalypt
    61-69.
    Views:
    426

    Hyperhydricity was observed throughout in vitro multiplication phase of a Eucalyptus grandis clone. Ultrastructural approach of tissue and cell differentiation, izoenzyme patterns, binding protein (BiP) expression, and pigment content were performed. Hyperhydric tissues showed a reduction in cell wall deposition, reduction of membranous organelles, higher cell vacuolation, and more intercellular spaces than its normal counterpart. Additionally, several vesicles were present in hyperhydric cells suggesting the occurrence of organelle autophagy by autophagic vacuole. Lower pigment content, intercellular spaces on the epidermis and the induction of a molecular chaperone (BiP) were observed in hyperhydric phenotype. Evidences of schizolysigenous process of intercellular space formation are compatible with a stress condition. Although plastoglobulli were observed in normal and hyperhydric chloroplasts, they were more evident in the normal ones. Abnormal stomata also reflected a disruptive situation and morphogenesis disturbances which would difficult plant acclimatization. Further observation of the epidermis ultrastructure allows us to conclude that the presence of intercellular spaces on its surface may be constraining the recovery and development of hyperhydric plants. Similarly to BiP, other proteins such as esterase (EST), acid phosphatase (ACP), malate dehydrogenase (MDH) and peroxidase (PDX) are possible to be used as stress markers in in vitro conditions. Our results confirm earlier findings about negative effects of hyperhydricity on in vitro plant morphogenesis and ultrastructure, which in eucalypt is associated with a stressful condition contributing to lower propagation ratios.

Database Logos
DOAJ ProQuest MTMT MTA EBSCO CROSSREF EPA BASE OpenAire Index Copernicus Vrije Universiteit Amsterdam