Optimizing disinfection protocols for yam explant regeneration in plant tissue culture
Authors
View
Keywords
License
Copyright (c) 2025 International Journal of Horticultural Science

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How To Cite
Abstract
Yam (Dioscorea species), does not produce commercially viable seeds, and asexual propagation is faced with challenges resulting from carried-over infections from previous generations. Contamination is a prevalent problem in Plant Tissue Culture (PTC), making the development of cost-effective and efficient disinfection protocols crucial for successful PTC. This study aimed to evaluate the effectiveness of yam explant disinfection protocols using various immersion timings, disinfectant concentrations (including ethanol (C2H5OH), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2)), and in single or combined disinfectants application. Twenty treatment combinations and one control were assessed on yam vines for Disinfection Efficiency (DE%), Negative Disinfection Effect (NDE%), and the regeneration of shoots and roots (SN & RN) from the culture after 21 days. The study showed that varying immersion times did not significantly impact the evaluated parameters. However, different concentrations of disinfectants resulted in diverse NDE responses. Surprisingly, higher concentrations of NaOCl led to reduced NDE, whereas lower concentrations increased NDE. On the contrary, higher concentrations of H2O2 increased NDE, while lower concentrations decreased it. Shoot and root regeneration rates were also significantly impacted by the choice of disinfection protocol. The research concluded that dual disinfection protocol, specifically 70% ethanol for 7 minutes followed by NaOCl, was most effective for eliminating surface-borne contaminants and achieving successful in vitro propagation of yam plantlets. This method offers a cost-effective solution for establishing microbe-free tissue culture yam plantlets and provides a basis for future research on other Dioscorea plants.
References
- Aighewi, B. A., Asiedu, R., Maroya, N., Balogun, M. (2015): Improved propagation methods to raise the productivity of yam (Dioscorea rotundata Poir.). Food security. 7. 823-834. https://doi.org/10.1007/s12571-015-0481-6
- Alla, N. A. A., Ragab, M. E., El-Miniawy, S. E. M., Taha, H. S. (2013): In vitro studies on cassava plant micropropagation of cassava (Manihot esculenta Crantz). Journal of Applied Sciences Research. 9(1): 811-820.
- Altan, F., Bürün, B., Sahin, N. (2010): Fungal contaminants observed during micropropagation of Lilium candidum L. and the effect of chemotherapeutic substances applied after sterilization. African Journal of Biotechnology. 9(7): 991-995. https://doi.org/10.5897/AJB08.090
- Ana, K. P., Ana, P. S., Joselita, C. S., Silvio, L. T., Juliana, M. R., Ana, R. P., Cristiane, D. P. (2016): Sodium hypochlorite sterilization of culture medium in micropropagation of Gerbera hybrida cv. Essandre. African Journal of Biotechnology. 15. 1995-1998. https://doi.org/10.5897/AJB2016.15405
- Andrade, M., Luz, J., Lacerda, S., Melo, P. (2000): Micropropagação da Aroeira (Myracrodruon urundeuva Fr. All) Ciência e Agrotecnologia.
- Benson, E. E. (2000): Special symposium: in vitro plant recalcitrance do free radicals have a role in plant tissue culture recalcitrance?. In Vitro Cellular & Developmental Biology-Plant. 36. 163-170.
- Cassells, A. C. (2012): Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. Plant cell culture protocols. 57-80. https://doi.org/10.1007/978-1-61779-818-4_6.
- Cassells, A. C., Doyle‐Prestwich, B. (2009): Contamination detection and elimination in plant cell culture. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. 1-14. https://doi.org/10.1002/ 9780470054581.eib241
- Chaves, A. D. C., Schuch, M. W., Erig, A. C. (2005): Estabelecimento e multiplicação in vitro de Physalis peruviana L. Ciência e Agrotecnologia. 29. 1281-1287. https://doi.org/10.1590/S1413-70542005000600024
- da Costa Urtiga, C., de Araújo Silva-Cardoso, I. M., Araujo Figueiredo, S. (2019): Low sodium isocyanurate concentrations as a substitute to medium autoclaving in plant tissue culture. Plant Cell, Tissue and Organ Culture (PCTOC). 139. 601-604. https://doi.org/10.1007/s11240-019-01681-9
- da Cruz, T. P., da Rocha, M. R., da Silva, S. M. F., Moraes, W. B., Moraes, S. D. P. C. B., Gazolla, P. A. R., de Jesus Junior, W. C. (2024): Fungicidal activity and molecular docking of glycerol‐derived triazole compounds for controlling coffee leaf rust. Plant Pathology. 9(73): 2453-2465. https://doi.org/10.1111/ppa.13986
- Demeke, Y., Tefera, W., Dechassa, N., Abebie, B. (2014). Effects of plant growth regulators on in vitro cultured nodal explants of cassava (Manihot esculenta Crantz) clones. African Journal of Biotechnology. 13(28). https://doi.org/10.5897/AJB2013.13287
- Ditommaso, A., Nurse, R. E. (2004): Impact of sodium hypochlorite concentration and exposure period on germination and radicle elongation of three annual weed species. Seed Science and Technology. 32(2): https://doi.org/377-391.10.15258/sst.2004.32.2.10
- El-Banna, A. N., El-Mahrouk, M. E., Dewir, Y. H., Farid, M. A., Abou Elyazid, D. M., Schumacher, H. M. (2021): Endophytic bacteria in banana in vitro cultures: Molecular identification, antibiotic susceptibility, and plant survival. Horticulturae. 7(12): 526. https://doi.org/10.3390/horticulturae7120526
- Gammoudi, N., Nagaz, K., Ferchichi, A. (2022): Establishment of optimized in vitro disinfection protocol of Pistacia vera L. explants mediated a computational approach: multilayer perceptron–multi-objective genetic algorithm. BMC Plant Biology. 22(1): 324. https://doi.org/10.1186/s12870-022-03674-x
- Gildemacher, P. R., Demo, P., Barker, I., Kaguongo, W., Woldegiorgis, G., Wagoire, W. W., Struik, P. C. (2009): A description of seed potato systems in Kenya, Uganda and Ethiopia. American journal of potato research. 86: 373-382. https://doi.org/10.1007/s12230-009-9092-0
- Gunson, H. E., Spencer-Phillips, P. T. N. (1994): Latent bacterial infections: epiphytes and endophytes as contaminants of micropropagated plants. In Physiology, growth and development of plants in culture (pp. 379-396). Dordrecht: Springer Netherlands.
- Hesami, M., Daneshvar, M. H., Lotfi-Jalalabadi, A. (2017): Effect of sodium hypochlorite on control of in vitro contamination and seed germination of Ficus religiosa. Iranian Journal of Plant Physiology. 7(4): 2157-2162. https://doi.org/10.22034/ijpp.2017.537980
- Hesami, M., Naderi, R., Tohidfar, M. (2019): Modeling and optimizing in vitro sterilization of chrysanthemum via multilayer perceptron-non-dominated sorting genetic algorithm-II (MLP-NSGAII). Frontiers in plant science, 10, 282. https://doi.org/10.3389/fpls.2019.00282
- Hesami, M., Naderi, R., Yoosefzadeh-Najafabadi, M. (2018): Optimizing sterilization conditions and growth regulator effects on in vitro shoot regeneration through direct organogenesis in Chenopodium quinoa. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology. 99(1). https://doi.org/10.5114/bta.2018.73561
- Jena, B., Padhan, B., Pati, K., Chauhan, V. B. S. (2024): Critical review on Nutra-pharmaceutical usage of yams. Food and Humanity, 100273.
- López-Galindo, C., Vargas-Chacoff, L., Nebot, E., Casanueva, J. F., Rubio, D., Solé, M., Mancera, J. M. (2010): Biomarker responses in Solea senegalensis exposed to sodium hypochlorite used as antifouling. Chemosphere. 78(7): 885-893. https://doi.org/10.1016/j.chemosphere.2009.11.022
- Magaia, H. E. (2015): Assessment and induction of variability through in vitro mutagenesis in cassava (Manihot esculenta Crantz) (Doctoral dissertation, Plant Breeding and Genetics, College of Horticulture, Vellanikkara).
- Mignouna, D. B., Abdoulaye, T., Akinola, A. A., Alene, A., Nweke, F. (2015): Factors influencing the use of selected inputs in yam production in Nigeria and Ghana. Journal of Agriculture and Rural Development in the Tropics and Subtropics (JARTS). 116(2): 131-142.
- Mihaljević, I., Dugalić, K., Tomaš, V., Viljevac, M., Pranjić, A., Čmelik, Z., Jurković, Z. (2013): In vitro sterilization procedures for micropropagation of ‘Oblačinska’ sour cherry. Journal of Agricultural Sciences, Belgrade. 58(2): 117-126. https://doi.org/10.2298/JAS1302117M
- Murashige, T., Skoog, F. (1962): A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 15(3).
- Negi, S., Singh, P., Trivedi, V. L., Rawat, J. M., Semwal, P. (2024): The current trends and research progress globally in the plant tissue culture: 90 years of investigation. Plant Cell, Tissue and Organ Culture (PCTOC). 157(3): 73.
- Nweke, F. I. (2015): Yam in West Africa: food, money, and more. Michigan State University Press.
- Obidiegwu, J. E., Lyons, J. B., Chilaka, C. A. (2020): The Dioscorea Genus (Yam) − An appraisal of nutritional and therapeutic potentials. Foods. 9(9): 1304. https://doi.org/10.3390/foods9091304
- Okoroafor, U. E. (2022): Microbial Contamination in Plant Tissue Culture and Elimination Strategies. Nigeria Agricultural Journal. 53(2): 348-355.
- Oyebanji, O. B., Nweke, O., Odebunmi, O., Galadima, N. B., Idris, M. S., Nnodi, U. N., Ogbadu, G. H. (2009): Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds. African journal of biotechnology. 8(20).
- Poku, A. G., Birner, R., Gupta, S. (2018): Why do maize farmers in Ghana have a limited choice of improved seed varieties? An assessment of the governance challenges in seed supply. Food security. 10: 27-46. https://doi.org/10.1007/s12571-017-0749-0
- Rodboot, N., Yenchon, S., Te-chato, S. (2024): Optimization of explant sterilization and plant growth regulators for enhancing the in vitro propagation of Nymphaea colorata Peter. Plant Cell, Tissue and Organ Culture (PCTOC). 159(3): 1-11. https://doi.org/10.1007/s11240-024-02911-5
- Shu-Hsien, H., Chih-Wen, Y. U., Lin, C. H. (2005): Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin of Academia Sinica, 46.
- Singh, C. R. (2018): Review on problems and its remedy in plant tissue culture. Asian Journal of Biological Sciences. 11(4): 165-172. https://doi.org/10.3923/ajbs.2018.165.172
- Sivanesan, I., Muthu, M., Gopal, J., Tasneem, S., Kim, D. H., Oh, J. W. (2021): A fumigation-based surface sterilization approach for plant tissue culture. International journal of environmental research and public health. 18(5): https://doi.org/2282.10.3390/ijerph18052282
- Teixeira da Silva, J. A., Kulus, D., Zhang, X., Zeng, S., Ma, G., Piqueras, A. (2016): Disinfection of explants for saffron (Crocus sativus) tissue culture. Environmental & Experimental Biology. 14(4). https://doi.org/10.22364/eeb.14.25
- Twaij, B. M., Jazar, Z. H., Hasan, M. N. (2020): Trends in the use of tissue culture, applications and future aspects. International Journal of plant biology. 11(1): 8385. https://doi.org/10.4081/pb.2020.8385
- Ukwueze, C. K. (2024): Assessment of Sterilants and their Combined Effect on Surface Sterilization of Musa spp. Nigerian Journal of Biotechnology. 41(1): 139-147. https://doi.org/10.4314/njb.v41i1.15
- Vallières, C., Avery, S. V. (2017): Metal-based combinations that target protein synthesis by fungi. Advances in Microbial Physiology. 70: 105-121. https://doi.org/10.1016/ bs.ampbs.2017.01.001
- Yildiz, M., Fatih Ozcan, S., T Kahramanogullari, C., Tuna, E. (2012): The effect of sodium hypochlorite solutions on the viability and in vitro regeneration capacity of the tissue. The Natural Products Journal. 2(4): 328-331. https://doi.org/10.2174/2210315511202040328
https://doi.org/10.31421/ijhs/31/2025/15325