Mechanical and Vehicle Engineering

Mixing Power Requirement Determination in Agitated Drum Using Dimensional Analysis

Published:
2023-06-30
Authors
View
Keywords
License

Copyright (c) 2023 Horváth Dániel, Tibor Poós

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Horváth, D., & Poós, T. (2023). Mixing Power Requirement Determination in Agitated Drum Using Dimensional Analysis . International Journal of Engineering and Management Sciences, 8(2), 76-88. https://doi.org/10.21791/IJEMS.2023.2.9.
Received 2023-01-17
Accepted 2023-06-20
Published 2023-06-30
Abstract

The mixing of granular materials in an agitated drum can be characterized by the dimensionless power equation. The equation was created by dimensional analysis, for which the parameters affecting the mixing power requirement were collected based on the literature. The most important of these are the rotational speed, the drum loading factor, the geometric and physical properties of the mixing drum and the granular materials.  The dimensionless power equation is used to estimate with reasonable accuracy the Power number within the given range of applicability , which has been validated by measurements. From the Power number, the mixing power requirement of the mixed granular material can be calculated, which can be used as operational data for selecting the mixing motor.

References
  1. O. Altun, P. Prziwara, S. Breitung-Faes, and A. Kwade, ‘Impacts of process and design conditions of dry stirred milling on the shape of product size distribution’, Miner. Eng., vol. 163, p. 106806, 0 2021, doi: 10.1016/j.mineng.2021.106806.
  2. I. Gijón-Arreortúa and A. Tecante, ‘Mixing Performance of a Curved-Ribbon Impeller during Blending of Food Powders’, Chem. Eng. Technol., vol. 38, no. 4, pp. 734–740, 2015, doi: 10.1002/ceat.201400682.
  3. I. Gijón-Arreortúa and A. Tecante, ‘Mixing time and power consumption during blending of cohesive food powders with a horizontal helical double-ribbon impeller’, J. Food Eng., vol. 149, pp. 144–152, Mar. 2015, doi: 10.1016/j.jfoodeng.2014.10.013.
  4. D. Horváth, T. Poós, and K. Tamás, ‘Modeling the movement of hulled millet in agitated drum dryer with discrete element method’, Comput. Electron. Agric., vol. 162, pp. 254–268, Jul. 2019, doi: 10.1016/j.compag.2019.03.033.
  5. Z. Zuo, S. Gong, and G. Xie, ‘Numerical investigation of granular mixing in an intensive mixer: Effect of process and structural parameters on mixing performance and power consumption’, Chin. J. Chem. Eng., vol. 32, pp. 241–252, prilis 2021, doi: 10.1016/j.cjche.2020.10.036.
  6. E. Ford and N. Naude, ‘Investigating the effect on power draw and grinding performance when adding a shell liner to a vertical fluidised stirred media mill’, Miner. Eng., vol. 160, p. 106698, 0 2021, doi: 10.1016/j.mineng.2020.106698.
  7. C. T. Jayasundara, R. Y. Yang, A. B. Yu, and D. Curry, ‘Discrete particle simulation of particle flow in IsaMill—Effect of grinding medium properties’, Chem. Eng. J., vol. 135, no. 1, pp. 103–112, 0 2008, doi: 10.1016/j.cej.2007.04.001.
  8. Y. Bao, Y. Lu, Z. Cai, and Z. Gao, ‘Effects of rotational speed and fill level on particle mixing in a stirred tank with different impellers’, Chin. J. Chem. Eng., vol. 26, no. 6, pp. 1383–1391, 0 2018, doi: 10.1016/j.cjche.2017.11.010.
  9. Y. Bao, T. Li, D. Wang, Z. Cai, and Z. Gao, ‘Discrete element method study of effects of the impeller configuration and operating conditions on particle mixing in a cylindrical mixer’, Particuology, vol. 49, pp. 146–158, prilis 2020, doi: 10.1016/j.partic.2019.02.002.
  10. J. Long et al., ‘Discrete element simulation for mixing performances and power consumption in a twin-blade planetary mixer with non-cohesive particles’, Adv. Powder Technol., vol. 33, no. 2, p. 103437, 0 2022, doi: 10.1016/j.apt.2022.103437.
  11. G. R. Chandratilleke, X. Jin, and Y. S. Shen, ‘DEM study of effects of particle size and density on mixing behaviour in a ribbon mixer’, Powder Technol., vol. 392, pp. 93–107, 0 2021, doi: 10.1016/j.powtec.2021.06.058.
  12. P. W. Cleary, ‘Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods’, Miner. Eng., vol. 11, no. 11, pp. 1061–1080, 0 1998, doi: 10.1016/S0892-6875(98)00093-4.
  13. W.-N. Wu, X.-Y. Liu, R. Zhang, and Z. Hu, ‘DEM investigation of the power draw for material movement in rotary drums with axis offset’, Chem. Eng. Res. Des., vol. 144, pp. 310–317, prilis 2019, doi: 10.1016/j.cherd.2019.02.011.
  14. L. Hu, H. Zhu, and J. Hua, ‘DEM simulation of energy transitions in a hammer mill: Effect of impeller configurations, agitation speed, and fill level’, Powder Technol., vol. 394, pp. 1077–1093, 0 2021, doi: 10.1016/j.powtec.2021.08.090.
  15. X. Jin, S. Wang, and Y. Shen, ‘DEM study of mixing behaviours of cohesive particles in a U-shaped ribbon mixer’, Powder Technol., vol. 399, p. 117097, 0 2022, doi: 10.1016/j.powtec.2021.117097.
  16. D. Horváth, K. Tamás, and T. Poós, ‘Viscoelastic contact model development for the discrete element simulations of mixing process in agitated drum’, Powder Technol., vol. 397, p. 117038, 0 2022, doi: 10.1016/j.powtec.2021.117038.
  17. S. Larsson, B. I. Pålsson, M. Parian, and P. Jonsén, ‘A novel approach for modelling of physical interactions between slurry, grinding media and mill structure in wet stirred media mills’, Miner. Eng., vol. 148, p. 106180, 0 2020, doi: 10.1016/j.mineng.2019.106180.
  18. W. Rong et al., ‘Sensitivity analysis of particle contact parameters for DEM simulation in a rotating drum using response surface methodology’, Powder Technol., vol. 362, pp. 604–614, 0 2020, doi: 10.1016/j.powtec.2019.12.004.
  19. H. Sun, H. Ma, and Y. Zhao, ‘DEM investigation on conveying of non-spherical particles in a screw conveyor’, Particuology, vol. 65, pp. 17–31, 0 2022, doi: 10.1016/j.partic.2021.06.009.
  20. C. Zheng, N. Govender, L. Zhang, and C.-Y. Wu, ‘GPU-enhanced DEM analysis of flow behaviour of irregularly shaped particles in a full-scale twin screw granulator’, Particuology, vol. 61, pp. 30–40, 0 2022, doi: 10.1016/j.partic.2021.03.007.
  21. A. P. Herman, J. Gan, Z. Zhou, and A. Yu, ‘Discrete particle simulation for mixing of granular materials in ribbon mixers: A scale-up study’, Powder Technol., vol. 400, p. 117222, 0 2022, doi: 10.1016/j.powtec.2022.117222.
  22. D. Horváth, T. Poós, and K. Tamás, ‘Examination of the hulled millet’s mixing process in an agitated drum dryer’, presented at the EXPRES 2019: 11th International Symposium on Exploitation of Renewable Energy Sources and Efficiency, Subotica, Serbia, Apr. 2019, pp. 27-30.
  23. X. Liu, X. Xu, W. Wu, F. Herz, and E. Specht, ‘A simplified model to calculate the power draw for material movement in industrial rotary kilns’, Powder Technol., vol. 301, pp. 1294–1298, Nov. 2016, doi: 10.1016/j.powtec.2016.08.005.
  24. Adamčík, ‘Design of phosphate fertilizer mixer’, Master’s thesis, BRNO University of Technology, 2012. [Online]. Available: https://dspace.vutbr.cz/bitstream/handle/11012/12744/Adamcik_2012_DP_hlavni_dokument.pdf?sequence=-1
  25. T. Poós, M. Örvös, and L. Legeza, ‘Development and Thermal Modeling of a New Construction Biomass Dryer’, Dry. Technol., vol. 31, no. 16, pp. 1919–1929, 0 2013, doi: 10.1080/07373937.2013.799483.
  26. T. Poós, E. Varju, and V. Szabó, ‘Determination of medicinal plants’ porosity’, presented at the International Scientific Conference on Advances in Mechanical Engineering (ISCAME 2017), Debrecen, Hungary, Oct. 2017, pp. 428-432.
  27. G. S. Gupta, S. Sarkar, A. Chychko, L. D. Teng, M. Nzotta, and S. Seetharaman, ‘Chapter 3.1 - Process Concept for Scaling-Up and Plant Studies’, in Treatise on Process Metallurgy, S. Seetharaman, Ed. Boston: Elsevier, 2014, pp. 1100–1144. doi: 10.1016/B978-0-08-096988-6.00040-7.
  28. Z. Fonyó and G. Fábry, Vegyipari Művelettani Alapismeretek (Basic Knowledge of Chemical Operations). Budapest, Hungary: Nemzeti Tankönyvkiadó Rt, 2004.
  29. A. Li et al., ‘The effects of filling level on the milling accuracy of rice in the friction rice mill’, Powder Technol., vol. 398, p. 117052, 0 2022, doi: 10.1016/j.powtec.2021.117052.
  30. S. Larsson, J. M. Rodríguez Prieto, H. Heiskari, and P. Jonsén, ‘A Novel Particle-Based Approach for Modeling a Wet Vertical Stirred Media Mill’, Minerals, vol. 11, no. 1, Art. no. 1, Jan. 2021, doi: 10.3390/min11010055.
  31. ‘Find minimum of constrained nonlinear multivariable function - MATLAB fmincon’. https://www.mathworks.com/help/optim/ug/fmincon.html (accessed Oct. 17, 2022).
  32. Z. Berk, ‘Chapter 7 - Mixing’, in Food Process Engineering and Technology, Z. Berk, Ed. San Diego: Academic Press, 2009, pp. 175–194. doi: 10.1016/B978-0-12-373660-4.00007-7.
  33. ‘Froude Number - Mixing Froude Number Calculation - PowderProcess.net’. https://powderprocess.net/Froude_number.html (accessed Oct. 14, 2022).
  34. F. Scargiali, A. Busciglio, F. Grisafi, A. Tamburini, G. Micale, and A. Brucato, ‘Power Consumption in Uncovered Unbaffled Stirred Tanks: Influence of the Viscosity and Flow Regime’, Ind. Eng. Chem. Res., vol. 52, no. 42, pp. 14998–15005, Oct. 2013, doi: 10.1021/ie402466w.
Database Logos