Search

Adaptive Backstepping Controller of PMLSM
1-6.

In this paper, a nonlinear adaptive speed controller for permanent magnet linear synchronous motors based on a newly developed adaptive recursive Backstepping control approach for a permanent magnet synchronous motor drive is discussed and analyzed. The Backstepping technique provides a systematic method to address this type of problem. It combines the notion of Lyapunov function and a controller procedure recursively.  The adaptive Backstepping control approach is utilized to obtain the robustness for mismatched parameter uncertainties. The overall stability of the system is shown using Lyapunov stability theorem. The simulation results clearly show that the proposed scheme can track the speed reference.

221
163
Bond Graph Modeling, Simulation, and Control of Permanent Magnet Linear Synchronous Motor: PMLSM Motor Based EVs Applications

The high-performance feature of the Permanent Magnet Linear Synchronous Motor (PMLSM) makes it a reliable and valuable motor for use in the automotive industry, especially for electric vehicle (EVs) applications. This research proposes a bond graph approach in modeling the PMLSM as a multi-domain dynamical system.

However, A time-based simulation was performed using 20-sim software to simulate the dynamical behavior of the motor. An equivalent model of the motor was first obtained and then modeled and simulated using 20-sim software. The model of the PMLSM drive system was modeled separately and incorporated with PMLSM Motor equivalent model to form a global model.

 Moreover, the motor drive system response was studied based on the sensor resolutions and the inverter switching frequency. The block diagram and the transfer function methods validated the bond graph model obtained. Two classical PIs such as continuous and discrete were implemented on the motor response to control the velocity of the motor.

46
32