Search
Search Results
-
Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories
194-202Views:1231The remote sensing techniques provide a great possibility to analyze the environmental processes in local or global scale. Landsat images with their 30 m resolution are suitable among others for landcover mapping and change monitoring. In this study three spectral indices (NDVI, NDWI, MNDWI) were investigated from the aspect of land cover types: water body (W); plough land (PL); forest (F); vineyard (V); grassland (GL) and built-up areas (BU) using Landsat-7 ETM+ data. The range, the dissimilarities and the correlation of spectral indices were examined. In BU – GL – F categories similar NDVI values were calculated, but the other land cover types differed significantly. The water related indices (NDWI, MNDWI) were more effective (especially the MNDWI) to enhance water features, but the values of other categories ranged from narrower interval. Weak correlation were found among the indices due to the differences caused by the water land cover class. Statistically, most land cover types differed from each other, but in several cases similarities can be found when delineating vegetation with various water content. MNDWI was found as the most effective in highlighting water bodies.
-
Urban vegetation classification with high-resolution PlanetScope and SkySat multispectral imagery
66-75Views:619In this study two high-resolution satellite imagery, the PlanetScope, and SkySat were compared based on their classification capabilities of urban vegetation. During the research, we applied Random Forest and Support Vector Machine classification methods at a study area, center of Rome, Italy. We performed the classifications based on the spectral bands, then we involved the NDVI index, too. We evaluated the classification performance of the classifiers using different sets of input data with ROC curves and AUC values. Additional statistical analyses were applied to reveal the correlation structure of the satellite bands and the NDVI and General Linear Modeling to evaluate the AUC of different models. Although different classification methods did not result in significantly differing outcomes (AUC values between 0.96 and 0.99), SVM’s performance was better. The contribution of NDVI resulted in significantly higher AUC values. SkySat’s bands provided slightly better input data related to PlanetScope but the difference was minimal (~3%); accordingly, both satellites ensured excellent classification results.