Search
Search Results
-
Remote Sensing and GIS based site suitability analysis for tourism development in Vaishali block, Bihar, India
12-22Views:599Geographic Information Systems (GIS) and Remote Sensing are presently recognized generally as an improve instrument for overseeing, breaking down, and showing gigantic volumes of fluctuated information suitable to numerous neighborhood and provincial arranging exercises. Because of the composite idea of the travel industry arranging issues, the planned of GIS in settling these issues is progressively perceived. This paper will think a portion of the conceivable outcomes of GIS applications in the travel industry arranging. For the most part, GIS applications in the travel industry have been tight to recreational office stock, the travel industry situated land the board, and diversion untamed life strife; and have been thin by absence of financing, and awkward techniques. Utilizing the case of site wellness investigation for the travel industry improvement and mapping, this paper features a few uses of GIS in the travel industry arranging in vaishali square, Bihar. According to our present investigation; the most reasonable the travel industry site recognized by the examination is inside significant towns. The urban focus with plausibility to develop into the travel industry focuses. The rest of the land shows a low appropriateness scale because of absence of significant appreciation for make a solid force factor. Availability is an essential for the travel industry advancement. Great street organize availability with closeness to railroads station or air terminal demonstrated solid vacationer potential site, this combined with proximity to grand magnificence delineates high appropriateness. Significant vacation destinations, for example, legacy locales, gardens and water bodies or lake demonstrated high appropriateness. This can be corresponded to the way that legacy destinations and other high appropriate highlights are converted into reasonable the travel industry site.
-
Landuse/landcover change process in a tropical semi-arid zone: case of two rural communes (Chadakori and Saé-Saboua) in Maradi region, Republic of Niger
1-12Views:222The study aimed to analyze the process of Landuse/Landcover change of two rural communes (Saé Saboua and Chadakori) of Maradi region (Republic of Niger) over the past 28 years (1986 – 2014), through landscape structure analysis by diachronic cartographic approach and landscape indices. Mixed classification of temporal series of Landsat images led to identifying six Landuse/Landcover (LULC) classes, namely ”cultivated land under shrubs and trees”, ”cultivated land under trees”, “continuous cropland”, ”fallow/pasture land”, ”forest reserve”, and ”settlement”. The composition and structure of the studied landscapes have greatly changed from 1986 to 2014. The class ”cultivated land under trees” was the landscape matrix in 1986 with 38.65% of landscape total area but in 2001 and 2014 the class ”continuous cropland” became the landscape matrix. The changes also affected the ”forest reserve” which was transformed to smallholder agricultural land from 1986 to 2014. The area occupied by classes ”cultivated land under trees” changed from 38.65% in 1986 to 8.78% in 2014; and from 1986 to 2014, the area occupied by ”fallow/pasture land” has decreased of about 16%. The decrease in these classes was in favor of ¨continuous crop land¨, ¨settlement¨ and “cultivated land under shrubs and trees” which respectively gained 38%, 0.3% and 8.15% of their areas in 1986. The results of this study reflect the problem of access to land and even land saturation in semi-arid region, a consequence of strong population growth. They also contribute to a better rethinking of agricultural practices in order to initiate adaptation and resilience strategies for the population facing food insecurity and poverty.
-
Landscape change in Aizawl city: A geospatial approach to assess landscape indices and human-induced transformation
65-81Views:254The change in an area’s natural surroundings is called landscape change. This change may be gradual or accelerated depending on the factors that influence the change. Natural elements such as native animals and birds seldom bring about any modification to the environment. However, human-induced change is devastating and severely transforms the environment. Such environmental transformation can be evaluated with the land use/ land cover assessment through satellite imagery and calculation of landscape indices. This paper attempts to ascertain the direction and the nature of the human-induced change in the city of Aizawl. To this end, the city has been divided into four zones to enable inter-zone comparisons. A northeast and southwest direction of human landscape transformation has been ascertained with the help of GIS and remote sensing techniques and landscape indices in Aizawl city.
-
A GIS-based study on the changing course of the River Jiadhal in the Dhemaji district, India
14-27Views:84River bank-erosion, deposition and channel-shifting are considered most dynamic and significant geomorphological processes formed by complex geological, hydrological, and anthropogenic factors. In the present study, river Jiadhal is one of the main sub-tributary of the River Brahmaputra in the Dhemaji district of Assam that changes its channel course frequently due to bank-erosion and sediment-deposition in the intermediate part and lower course of the channel. A study on the changing course of the river Jiadhal was carried out using satellite imageries for the years 1987, 1997, 2007 and 2017. The study found that the changes in the river vary from time to time and the bank-erosion and sediment-deposition fluctuate from place to place. The total area of bank-erosion is 13.34 km2 from 1987 to 2017 and the total area of sediment-deposition is 14.59 km2 from 1987 to 2017. This paper evaluates how the shape, size and position of the Jiadhal River have changed from the years 1987 to 2017 using remote sensing and GIS techniques. The study is also necessary for effective management along the side of the river Jiadhal to control bank erosion and to mitigate the adverse impact of erosion and channel-shifting.
-
Spatial pattern of soil erosion using RUSLE model and GIS software at the Saf Saf watershed, Algeria
31-47Views:164Soil erosion is one of the problems threatening the Algerian environment. In agriculture, soil erosion leads to the thinning of the topsoil under the effect of the natural erosive forces of water, or under the effect of agricultural activities. The present study aims to estimate average soil loss rate and to identify vulnerable zones. Through the integration of RUSLE model at the Saf Saf watershed, various parameters are utilized such as the rainfall erosivity factor (R), soil erodibility factor (K), slope length - slope factor (LS), crop management factor (C) and practice management factor (P). All these parameters are prepared and processed through a geographic information system (GIS) and remote sensing using various database sources. The results reveal that the river basin has an average annual soil loss of 3.9 t ha−1 yr−1, and annual soil loss of 4.53 million tonnes for the period 1975-2017. Meanwhile, eighty five percent of the study area is experiencing acceptable rate of soil erosion loss, which is ranging between 0 to 5 t ha−1 yr−1. The present study of risk assessment can contribute to understand the spatial pattern of soil erosion in order to use appropriate conservation practices for sustainable soil management.
-
Quantitative Morphometric Analysis of Streams in Extreme Humid Areas: A Case Study of the Um-Mawiong River Basin, Mawsynram, Meghalaya
59-75Views:134Quantitative morphometric analysis of the drainage system is essential to characterising a watershed, as all the hydrologic and geomorphic processes occur within the watershed. Consequently, this plays a crucial role in understanding the geo-hydrological attributes of a drainage basin to the terrain feature and its flow patterns, thus enabling the estimate of the incidence of infiltration and runoff and other related hydrological characteristics of a watershed, which strongly impacts natural resource conservation. The study area selected is the Um-Mawiong River basin in Mawsynram, Meghalaya. The basin shows a dendritic pattern that highlights the homogeneity in the texture of the basin. Results suggest that the stream frequency of the basin is 19.10 km², suggesting a faster surface runoff and less infiltration. In addition, it has an Elongation ratio of 0.75 indicating an elongated basin shape. The current study demonstrates that the implementations of GIS techniques are trustworthy, efficient, and capable of managing extensive databases for managing river basins. The present study tries to analyse the linear, areal and relief aspects of the basin using a GIS environment and manipulated for different calculations. The analysis reveals that the total number of stream segments and length are maximum in first-order streams and decrease as stream order increases. The drainage density exhibits a high degree of positive correlation, i.e., 0.87, with its frequency suggesting an increase in stream population concerning increasing drainage density and vice versa.
-
Landslide Susceptibility mapping using the Analytical Hierarchy Process and GIS for Idukki District, Kerala, India
11-32Views:167This study demonstrates the application of the analytical hierarchy process (AHP) technique for landslide susceptibility mapping of Udumbanchola and Devikulam taluk of Idukki district (Kerala, India). The landslide conditioning factors, such as lithology, geomorphology, slope angle, slope aspect, relative relief, drainage properties, land use/ land cover, and lineament characteristics,are derived using remote sensing data and GIS. The landslide susceptibility of the region is estimated using the weights derived by the AHP method. The analysis indicates the controls exerted by the structural and fluvial process and relief characteristics on the landslide activity of the region. The landslide susceptibility map of the region suggests that the high and severe susceptible zones cover about 10.68% of the area, and another 9.40% falls under the moderate susceptibility zone. The results highlight the significance of implementing various structural and non-structural measures in the moderate to severe susceptibility zones to mitigate the impacts of landslides.
-
Land use change detection along the Pravara River basin in Maharashtra, using remote sensing and GIS techniques
71-86Views:100In the past few decades there has been an increasing pressure of population all over the world, especially in India, resulting in the utilization of every available patch of available land from woodlands to badlands. The study area represents a basin which is economically growing fast by converting the fallow lands, badlands and woodlands to agricultural land for the past few decades. IRS (Indian Remote sensing Satellites) 1 C – LISS III and IRS 1 C PAN and IRS P6 – LISS III and IRS 1 D PAN Images were merged to generate imageries with resolution matching to the landscape processes operating in the area. The images of the year 1997, 2000, 2004 and 2007 were analyzed to detect the changes in the landuse and landcover in the past ten years. The analysis reveals that there has been 20% increase in the agricultural area over the past ten years. Built up area also has increased from 1.35% to 6.36% of the area and dense vegetation also has marginally increased. The remarkable increase in the agricultural area occurs owing to the reclaim of the natural ravines and fallow lands. Presently the area looks promising, but it is necessary to understand the sedimentological and geomorphological characteristics of the area before massive invasion on any such landscapes because the benefit may be short lived.
-
Assessment of spatio-temporal waterline changes of a reservoir: A case study of Ujjani wetland, Maharashtra, India
1-13Views:169The Ujjani reservoir is an artificial inland wetland and a potential Ramsar site in Maharashtra, India. The present study investigates the changes in the surface water area over time using remote sensing imageries (LANDSAT, LISS-III, Sentinel 2 series) for four decades (1981 to 2021) and the normalized difference water index (NDWI). The study reveals that the overall mean amount and rate of decrease in the surface water area are estimated at 20.50% (44.31 + 30.38 km2) and 0.75% year-1 (1.62 + 1.36 km2year-1), respectively. Furthermore, multiple correlation matrix analysis shows a strong positive correlation between surface water area and rainfall while a weak negative correlation with mean annual temperature (TMAX). Thus, indicating rainfall as the principal factor in inducing changes to the surface water area of the Ujjani wetland. However, the study also finds that the impact of the dramatic rise in population growth and anthropogenic activities in the form of overexploitation and land encroachments for agriculture are gradual but significant cursors to wetland degradation. Hence, the study recommends periodic monitoring, management, and conservation of wetlands, by employing stringent policies and effective technological measures.
-
Time series analysis of major land resources using Landsat images in a part of district Jhansi, Uttar Pradesh, India
41-57Views:38Space born technology, with its repetitive nature, uses electromagnetic energy to capture digital data from the Earth's surface by remote sensing systems. The purpose of this research is to track changes in land resources with six time series (2003-09, 2003-15, 2003-21, 2009-15, 2009-21 and 2015-21) over a period of 18 years. Multi-date Landsat images of 2003, 2009, 2015 and 2021 have been used to monitor the changing pattern. Level – I classification scheme composed by NRSC/ ISRO and supervised Maximum Likelihood Classification (MLC) techniques were used to identify and classify land use/ land cover features located in Jhansi Tehsil. The findings show that there have been significant changes in land resources over the years. The area under agriculture land, built-up and waterbodies were increased by 48.83%, 53.53% and 106.73% while forest/ tree outside forest and wastelands were reduced by 59.74% and 38.68% respectively It is concluded that, the expansion of key land resources indicates the growth in population and socio-economic activities whereas the loss in some land resources might be due to human induced progressive activities.
-
Monitoring the changes of a suburban settlement by remote sensing
76-83Views:81Satellite images and aerial photos support settlement surveys and provide valuable information of their physical environment. Aerial photos are excellent tools to overview large areas and simultaneously provide high-resolution images making them efficient tools to monitor built-up areas and their surroundings. Aerial photos can also be used to collect complex spatial data as well as to detect various temporal changes on the land surface, such as construction of illegal edifices and waste dumps. The 10 to 30-meter resolution SPOT and Landsat images are usually insufficient for site specific data collection and analysis. However, the recently available 0.5-meter resolution satellite images have broadened the scope of monitoring and data collection projects. Beyond environmental and urban monitoring, the new available high-resolution satellite images simplify the everyday work of local authorities and will facilitate the development of governmental databases that include spatial information for public utilities and other communal facilities.
-
Sentinel-2 satellite-based analysis of bark beetle damage in Sopron Mountains, Hungary
33-40Views:63Sopron mountains were affected by bark beetle (Ips typographus) damage between 2017 and 2020, which was surveyed on high-resolution ESA Sentinel-2 satellite images for the period 2017 and 2020 using Mosaic Hub, Anaconda, and Jupyter Notebook web-based computing environments. Biotic forest damage was detected based on vegetation (NDVI) and moisture (MSI, NDWI) indices derived from satellite images. The spatial and temporal change of damage was observed in the image series, resulting in information about the level of degradation and regeneration. In pursuance of GIS processing, 84 forest compartments were compared, which showed in most of the cases (97%) negative interannual change in the index mean values (MSI = - 0.14, NDWI = - 0.2, NDVI= - 0.19) when years compared to each other. The remote sensing-based survey was marked out and validated based on the forest database of the Hungarian Division of Forest of National Land Centre and forest protection damage reports of the Hungarian National Forest Damage Registration System.