Search

Published After
Published Before

Search Results

  • The developement of red mud flood environmental information system and the methodology for the spatial analysis of the degraded area
    1-11
    Views:
    174

    The red mud disaster occurred on 4th October 2010 in Hungary has raised the necessity of rapid intervention and drew attention to the long-term monitoring of such threat. Both the condition assessment and the change monitoring indispensably required the prompt and detailed spatial survey of the impact area. It was conducted by several research groups - independently - with different recent surveying methods. The high spatial resolution multispectral aerial photogrammetry is the spatially detailed (high resolution) and accurate type of remote sensing. The hyperspectral remote sensing provides more information about material quality of pollutants, with less spatial details and lower spatial accuracy, while LIDAR ensures the three-dimensional shape and terrain models. The article focuses on the high spatial resolution, multispectral electrooptical method and the evaluation methodology of the deriving high spatial resolution ortho image map, presenting the derived environmental information database.

  • Studying the accuracy of orthophotos on the example of various terrain models in study areas in Hungary
    31-39
    Views:
    135

    Depending on the orientation data, the accuracy of the applied terrain models and the field content of the orthophotos data of different accuracy can be obtained in the course of analysing orthophotos. Considering the factors influencing accuracy, differences resulted by the application of different elevation models are studied in this paper in two study areas in Hungary. Primary aim of this study is to determine the magnitude of differences between the co-ordinates of reference points digitized from orthophotos and that of points measure.

  • Flood model for the Bódva catchment
    12-26
    Views:
    151

    In term of floods the current area of Hungary has extensively been endangered. Modelling of flood processes – mainly following the hydrological events in the riverbed – has recently been developed. As far as protection dykes provide protection of the inhabited and agricultural areas, the flood models can run with acceptable preciseness. However, when dykes cannot withstand against the increasing load and a dyke burst occurs, fast and efficient protection measures shall be taken in the protected areas. The dynamic 4D Flood model presented in this paper makes possible a fast modelling of dyke burst occurring in the protected side and spreading of water mass, based on real parameters. For this reason the features of protected area shall be recognised, for example topology of creeks, features of agricultural and inhabited areas, parameters of roads, railways, rainwater drainage, buildings, natural conditions (soil parameters, meteorological characteristics, etc.). The results satisfy the comprehensive demands of the Directorate General for Disaster Prevention of Borsod-Abaúj-Zemplén County. In case of dyke burst, the completed Flood Model can run the expected events of the next hour in a few minutes. This time is enough for the specialists to bring operative decisions to protect the inhabitants and avoid material losses.

  • Preliminary analysis of red mud spill based on aerial imagery, Hungary
    47-57
    Views:
    129

    One of the largest industrial spills in Europe occurred in the village of Kolontár (Hungary) on October 4, 2010. The primary objective of the hyperspectral remote sensing mission was to monitor that is necessary in order to estimate the environmental damage, the precise size of the polluted area, the rating of substance concentration in the mud, and the overall condition of the flooded district as soon as possible. The secondary objective was to provide geodetic data necessary for the high-resolution visual information from the data of an additional Lidar survey, and for the coherent modeling of the event. For quick assessment and remediation purposes, it was deemed important to estimate the thickness of the red mud, particularly the areas where it was deposited in a thick layer. The results showed that some of the existing tools can be easily modified and implemented to get the most out of the available advanced remote sensing data.