Vol. 3 No. 1-2 (2005): Gyepgazdálkodási Közlemények (GS-03)
##issue.tableOfContents##
Cikk (Article)
-
Effect of fertilization on the mineral element uptake of an established all-grass sward 4.
3-10Views:57The effects of different N, P and K supply levels and their combinations were examined on the mineral element uptake of an established all-grass sward with seed mixture of eight grass species in the 28th year of a long term fertilization field experiment set up on a calcareous chernozem loamy soil. The lay-out and method of the trial as well as the fertilizer responses on the hay yield, nutritional values and element content were published elsewhere (Kádár, 2005, 2005a; Kádár és Győri, 2005). The soil of the growing site contained around 3% humus, 5% CaCO3, 20-22% clay in the ploughed layer and was originally, moderately well supplied with available K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4Nx4Px4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m, the area was prone to drought. In 2001, however, the area had satisfactory amount of 621 mm precipitation with a fairly good distribution. The grass was established on 21. September 2000. The main results and conclusions can be summarised as follows:
1. As a function of NxP positive interactions the element uptake of the 1st cut hay expressed as mean of K treatments increased between the N0P0 control and the maximum N3P3 levels as follows: K 62-190, N 45-218, Ca 16-51, S 5-24, P 4-24, Mg 4-16, Na 0.5-5.0 kg/ha; Mn 282-968, Sr 35-170, Zn 32-73, Ba 29-55, B 18-44, Cu 8-40 g/ha. The uptake of Ba increased from 23 to 62 g/ha, that of Ni from 1.5 to 8.9 g/ha as a result of KxP positive interactions. Uptake of Mo measure on K0P0 soil, however, dropped from 1.6 g/ha to 0.4 g/ha on the K3P3 soil as a function of negative KxP interactions.
2. The 2nd cut hay harvested on 9th October 2001 showed only N-effects. The hay yield measured on N-control soil was 1.0 t/ha while on 300 kg/ha/yr N-treatment 3.9 t/ha. The uptake of Fe, Ba and Mo increased 2-fold; uptake of Ca, S, P, Sr, Zn and Co 3-4-fold, uptake of K, N, Mg, Mn, Ba and Cu 5-6-fold, while uptake of Na 33-fold with the maximum N-rate, compared to the N-control and as means of PK treatments.
3. The 2 cuts together gave on the unfertilised control 3 t/ha, while on the N3P3K3 maximum supply level 13 t/ha hay yield. The uptake of Fe, Cr, B, Ni, Mo and Co increased 2-3 times, uptake of Ca, Mg, Mn, K, Zn, Ba and Cu 5-6 times, uptake of S, Sr and P 7-8 times, uptake of N 10 times, while uptake of Na 16 times on the maximum N3P3K3 supply levels, compared to the unfertilised control. The maximal mass of uptaken K and N made up 388 kg/ha, Ca 80 kg/ha, S 49 kg/ha, P 42 kg/ha (96 kg/ha P2O5), Mg 24 kg/ha in 2001.
4. To have 1 t of air-dry hay it was used by grasses as a mean of 25 kg K (30 kg K2O), 20 kg N, 6 kg Ca (8-9 kg CaO), 2-3 kg S, 2 kg P (5 kg P2O5) and 2 kg Mg (3-4 kg MgO). For microelements: 300 g Na, 200 g Fe, 120 g Mn, 100 g Al, 16 g Sr, 13 g Zn, 8 g Ba, 5 g B, 5 g Cu, 1-2 g Ni, 1 g Mo, 0.2 g Cr and 0.1 g Co. The As, Hg Cd, Pb and Se were under detection limit of 1 g. Data may serve for assessing the nutrient demand of all-grass sward. -
Effect of fertilization on the aminoacid content and aminoacid yield an established all-grass swarde 5.
11-20Views:79The effects of different N, P and K supply levels and their combinations were examined on the amino acid content and yield of an established all-grass sward with seed mixture of eight grass species in the 28th year of a long term fertilization field experiment set up on a calcareous chernozem loamy soil. The lay-out and method of the trial, as well as the fertilizer responses on the hay yield and quality parameters, were published elsewhere (Kádár, 2005; Kádár and Győri, 2005). The soil of the growing site contained around 3% humus, 5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4Nx4Px4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. In 2001, however, the area had a satisfactory amount of 621mm precipitation with a fairly good distribution. The grass was established on 21. September 2000. The main results and conclusions can be summarised as follows:
1. The content of GLU, ASP, HIS and ARG increased in the crude protein of the 1st cut hay as a function of N-fertilization up to 12-19%. The same time the content of PRO decreased up to 23%, CYS up to 25%, TRY up to 42% and ALA up to 48% compared to the N-control. The P fertilization raised the concentration of ASP, LEU, GLY, HIS, PHE and CYS, while the content of ALA dropped down to 41% that of P-contol.
2. As a function of NxP positive interactions the content of ASP rose from 7.2 to 10.3%, HIS from 3.8 to 5.8%, ARG from 3.2 to 4.2% compared to the NP control, while the content of ALA diminished from 5.8 to 2.2%, TRY from 1.3 to 0.6%. The K fertilization also depressed the TRY synthesis. The N0P0K0 plots showed 1.59% TRY in protein, while the N3P3K3 maximum supply plots only 0.35%.
3. The yield of amino acids was enhanced 3-4 times by N fertilization, 2.0-2.5 times by P fertilization and 20-30% by K fertilization. The amino acid yield increased on the N3P3K3 plots, compared to the N0P0K0 plots, in the case of ALA and TRY 3-4 times. Most of the other amino acids yielded 8-12 times more, HIS 14 times, PRO 16 times, GLY 18 times and CYS 20 times more. The maximum yield of essential amino acids made up 774 kg/ha, the total amino acid yield 1552 kg/ha and crude-protein 1779 kg/ha in the 1st cut hay.
4. As a result of NxP interactions the ratio of ASP/ALA changed from 1.2 to 4.7, that of ARG/TRY from 2.5 to 6.3, that of HIS/TRY from 2.9 to 9.7 with the increased NP supply. Thus, fertilization can induce an imbalance of amino acids and so change or deteriorate the biological quality of protein. In similar circumstances the forage may require a TRY supplement to restore the imbalance of amino acids. -
Changes in land use in Fiság-valley between 1980 and 2003
21-22Views:62Landscape and land use forms have been changing constantly throughout history. The investigation area is located in the Eastern Carpathians, a modest basin, where the variable land use forms – pasture, hayfield, forest, forested pasture, forested hayfield and arable land – form a mosaic-like scenery.
Our investigation covers a period of 23 years, based on field work and historical analogue map-analysis. The survey provides data regarding the transformation of land use through two decades and also makes further research possible. -
The vegetation of the pastures from the Aninei mountains
23-25Views:54The situation of the Aninei Mountains in the South-Western part of Romania, at the interference of air masses with maritime (of Western origin), continental (of Eastern origin) and Southern character (coming across the Mediterranean Sea), as well as the carstic relief conferred by the calcareous geologic substrate, account for the floristic peculiarities of this region, containing numerous rare and characteristic Banatian elements. The European, Southern and Eastern influences are expressed in the diversified floristic composition of the pastures, where xerophile and xeromezophile species prevail. A pecularity of the researched area is represented by the calcophile vegetation of the xerophilic pastures. In the floristic composition, we were able to identify several sporadic species in Romania.
-
The repartition of aconitum species throughout the Romanian Carpatians
26-28Views:52Due to anthropic factors, the spreading of the Aconitum species has known a significant reduction in the last decades, the main causes are represented by the diminution of the natural area, and by the intensive harvesting of some species for pharmaceutical purposes. All Aconitum species are distinguished by a great variability, probably as a result of hybridization, but generally they do not fit into an easy to recognize morphologic or geographic pattern. This remarkable polymorphism, underlined by the specialists in the field, is responsible for the taxonomic complexity of the Aconitum genus and results in different classification ways of the pertaining species. Thorough future chemotaxonomic researches are necessary to establish the exact place of each species in more and more complex classifications.
From the species of the investigated genus, the widest spreading has Aconitum anthora, followed by A. moldavicum and A. paniculatum. The areas richest in different Aconitum species are the Northern half of the Oriental Carpathians and the Eastern part of the Southern Carpathians; in the Apuseni Mountains, Aconitum appears less frequently.pdf66 -
Overutilization of Pastures by Livestock
29-35Views:332Soil degradation caused by overgrazing is a worldwide problem. The degradation of an overutilized area occurs mainly where animals prefer to spend extra time because of the attractants that are around gateways, water sources, along fences or farm buildings. High grazing pressure decreases plant density which results in changes of the botanical composition of a pasture. The effect that grazing has on a plant depends on the timing, frequency and intensity of grazing and its opportunity to regrow. Overgrazing adversely effects soil properties, which results in reduced infiltration, accelerated runoff and soil erosion. Evidence has been corroborated with high bulk density values, high dry mechanical resistance and low structural stability. The degradation of the landscape may be a short-term phenomenon and recovery is possible after grazing pressures have been greatly reduced. Management practices have been used successfully to improve grazing distribution. These practices include water development, placement of salt and supplements, fertilizer application, fencing, burning, and the planting of special forages which can be used to enhance grazing by livestock in underutilized areas.
The authors carried out their grazing experiment on the Hortobágy. The effects of overutilization by livestock on soil properties and vegetation on certain areas of grassland are presented in this paper.pdf225
Szemle (Review)
-
I was a shepherd Farkaslaka
41-58Views:55Azokról a farkaslaki pásztoremberekről akarok írni, akik a Gordon hegy alatti dombokon állottak napsütésben, csillagfényben, gyönyörködtek a kiviruló tavaszi határban, vagy a levélhullató őszben, de szemüket rajta tartották a legelésző juhokon, heverő kutyákon. Ott állottak az esőben, szélben, viharban is , éjjel keresték az elkódorgott juhot, ha kellett megküzdöttek a farkassal s néha a medvével is. Fejték a juhokat akkor is, ha azok lucskosak voltak, sároztatták a két lábukra feszülő fehérharisnyát, pásztortűz mellett szárítkoztak és csúcsosra húzott süveggel állották a záporokat. A közülük kiemelkedő tanult emberek éppen így állottak a dombokon, szemüket rajta tartva kis népükön.
Vita (Discussion)
-
Shall we graze?
36-39Views:64Since the end of the 18th century, since 1780, this question has been raised more and more frequently. At that time, an acknowledged authority wrote in his book that we should not graze and the number of those against grazing has been increasing since then. Nowadays many scientific popular and scientific articles are published against grazing.
This short summary examines the question from the aspect of the users and describes those obvious reasons which cannot be neglected. The herds of grazing animals were welcomed by the cities of western countries from Strasbourg to Venice because of their excellent meat quality. This export gave 70% of the country’s revenue.
For the above reasons, the answer to the question of the title is definitely yes!!pdf (Hungarian)131