Search
Search Results
-
Effect of season and sowing time on the moisture loss dynamics and yield of maize
255-265Views:213The effect of sowing date on maize development and yield was studied in field experiments. The experiment was set up at the experimental garden of the University of Debrecen Centre of Agricultural Sciences Faculty of Agriculture, Department of Plant Sciences in 2005 and 2006 on calcareous chernozem soil. Six hybrids with different genetic characteristics and vegetation period were tested (Sze 269, DK 440, PR37D25, NK Cisko, Mv Maraton, PR34B97) at three different sowing dates.
2005 was a very wet year. The amount of precipitation in the vegetation period was about 150 mm higher than the average of 30 years. No significant differences were observed in temperature. However, the number of sunny hours was much lower during the summer than as usual. This had an influence on yields.
In 2006, there was no risk of inland water in spite of the large amount of precipitation at the beginning of the year. The amount of water available for plants was satisfactory during the season due to the favorable amount of precipitation. Therefore, plants suffered less from the heat in July. However, hail on 22 July caused significant damage. The number of sunny hours in the summer was high enough. The warm, dry autumn helped the water release of plants.
In 2005, the results of the third sowing date could not be evaluated due to the large number of missing plants. The yield of hybrids ranged between 12-14 t/ha for the first sowing date. For the second sowing date, yields ranged between wider boundaries. The hybrid PR37D25 has a very high yield in the case of the second sowing date, and its seed moisture content was favorably low. The yield of hybrid PR34B97 was the lowest at the later sowing date, the prime reason of this was damage caused by Diabrotica virgifera. The seed moisture content at harvest varied between 16-24% for the first sowing date. In the case of the second sowing date, higher values were measured. Hybrids Sze 269 and NK Cisko had favorable water release characteristics. The maximum value of leaf area index was the best in the case of the first sowing date (5-5.5 m2/m2).
In 2006, yields for the first sowing date ranged between 8-10 t/ha. At the second sowing date, more favorable results were obtained. The reason for this is probably that hail caused a higher damage in hybrids with the early sowing date. Plant stock with later sowing date could recover more successfully. Hybrid PR37D25 had very high yields for the second and third sowing dates. The high-yielding hybrid PR34B97 also had high yield, but this was accompanied by higher seed moisture content. Due to the warm, sunny autumn weather, the hybrids had good water-release dynamics and were harvested with a lower seed moisture content than in the previous year. For the first sowing date, the seed moisture content was around 13-14% except for hybrid PR34B97. For the second and third sowing dates, higher values were observed. Leaf area index was significantly reduced in August for all three hybrids due to the hail in July. For the first two sowing dates, the leaves of hybrid Sze 269 were the first to dry similarly to the previous year.
Year had a strong effect on the results in both years. -
Impact of environmental changes resulting from different sowing dates on maize yield
99-104Views:150Three Debrecen maize hybrids of different genotypes (Debreceni 285, Debreceni 377 and Debreceni 382) were examined on chernozem soil in a field experiment. During the two years of the experiment (2009–2010), we wanted to get to know how the examined hybrids reach to different sowing dates and what impact early, optimal and late sowing has on yield.
In 2009, balanced soil and air temperature resulted in steady emergence. However, the low temperature in early April and the cooling down in mid-May 2010 caused a delayed emergence.
The grain moisture content at harvesting and the high yield showed a strong crop year effect. In 2010, yield was much lower (1.664 t ha-1) and grain moisture was significantly higher (34%)than in 2009.
In 2009, early sowing resulted in yield decrease (P<0.05), but it also significantly reduced grain moisture at harvesting (P<0.05). Although late sowing slightly increased yield (not significantly), but grain moisture at harvesting increased by 9.2%. In 2010, optimal sowing date was shown to be the best alternative from the aspect of yield, but there was no significant difference in comparison with early and late sowing. Grain moisture at harvesting greatly increased (13.3%).
The Debreceni 382 maize hybrid reacted to sowing dates flexibly, neither early, nor late sowing affected its yield significantly and the grain moisture at harvesting showed 12% increase in the case of the late sowing date. In 2009, maize hybrids Debreceni 285 and Debreceni 377 reached their highest yield in the case of the sowing date which was shown to be optimal (23rd April), while the different sowing dates had no effect on yield in 2010.
-
The role of leaf area and photosynthesis in optimising the sowing date of maize
5-10Views:148Our sowing date experiment took place in the Demonstration Garden of Institution of Plant Sciences, Agricultural Center of University of Debrecen, in 2012–2014. The thesis contains data of test year 2014. Our purpose, besides several other examinations, was to observe how sowing date influences leaf area index and activity of photosynthesis of maize hybrids, and how those factors affect fruiting. In the experiment we monitored the change of the leaf area index and the photosynthesis of hybrids with four different growing seasons.
Based on the results, it can be concluded that most of the examined hybrids reached their smallest leaf area with the third sowing date and with the highest yield results. Hybrid Da Sonka had the largest leaf area (4.10 m2 m-2), and hybrid DKC 4590 produced the highest yield (13.16 t ha-1)
with the third sowing date.
During testing the photosynthetic capacity, the extremely high performance of the youngest plants with the third sowing date is outstanding, which can be explained by the different ripening periods. Examination of the correlation between the photosynthetic capacity and the yield, by linear regression analysis, also proves that photosynthesis has a determinative role in fruiting.
The results obtained confirm that not only the environmental and agricultural factors in the growing season have effect on the yield, but also other factors like the leaf area index and the photosynthesis are determinative parameters, and all those factors together, modifying effects of each other, develop average yields.
-
Effects of different crop years and sowing date on maize yield
93-96Views:141We carried out the tests in the flood meadow soil formed on the alluvial cone of Nagykereki, Sebes-Körös belonging to the Bihar plane small region. The aim of the study was to analyse the effect of the different sowing date of maize on the yield trend based on a comprehensive study conducted for 6 years (2007–2012).
The sowing date of maize hybrids is a factor that significantly influences yield, however, its effect is not significant in each crop year. In the years when the date of sowing has a modifying effect, the reliable yield level can be reached with optimal sowing date management (24 April).
The advantage of early sowing (10 April) proved to be dominant in the year of 2012, the seeds were placed into the still wet soil therefore shooting was more balanced. Maize seeds sown at the time of optimal (24 April) and late (10 May) sowing dates were placed into the already dry soil, which deteriorated germination and the strength of early initial development that had an effect on the yield.
-
Examination of the population density and sowing date of different maize genotypes in the Hajdúság region
111-115Views:137The experiment was carried out 6 km from Debrecen, next to the main road 47 on a homogeneous field on brown forest soil. Five corn hybrids were tested in the trial (DKC 4795, DKC 4995, KWS Kornelius, NK Cobalt, PR37 N01) at three different sowing times (early – 5th April, average – 21st April, late – 10th May). At each sowing time, three different plant densities were applied (modest – 58 500 plants ha-1, average –70 200 plants ha-1, high – 82 300 plants ha-1). The agrotechnics applied
in the experiment satisfied the requirements of modern corn cultivation.In the study, the best yield result was achieved with the early sowing time out of the three examined sowing times (11 315 kg ha-1), which was significantly different (LSD5%=495 kg) from that of the average sowing time (10 690 kg ha-1), however, there was no statistically justifiable difference between the yield results of the early and the late sowing times. There was a significant difference also between the average and late sowing time. Our results indicate that the different sowing times resulted in a different flowering times. Consequently, the stands of early and late sowing time reached this critical stadium of growth under proper climatic circumstances (precipitation: 39 mm and 136 mm, average temperature at flowering: 18.1 oC and 20.3 oC), while flowering in the case of the average sowing time of 21st April was in the first half of July and the average temperature at flowering was warmer (23.2 oC) with only 10 mm precipitation.
In the experiment, the plant density response was also examined. According to the measured data, four of the five hybrids responded badly to the increasing plant density. We found that the plant density of 58 500 plant ha-1 gave the largest yield results (DKC 4995 11 794 kg ha-1 – NK Cobalt 10 998 kg ha-1, average of five hybrids: 11 430 kg ha-1), while the lowest yields were obtained at the plant density of 82 300 plant ha-1 (KWS Kornelius 11 037 kg ha-1 – NK Cobalt 10 019 kg ha-1, average of five hybrids 10 720 kg ha-1). The difference between the two plant densities was significant (LSD5%=494 kg), however, the 70 200 plant ha-1 plant density did not show any statistical difference from neither the 58 500 ha-1 nor from the 82 300 plant ha-1 stands. When examining the data of the hybrids separately, we found that there was a significant difference between the average yield of the lowest and highest plant densities only in the case of three (DKC 4795, DKC 4995, NK
Cobalt) out of the five hybrids (DKC 4795: 11 757 kg ha-1 – 10 857 ha-1 where LSD5% =816 kg; DKC 4995: 11 794 kg ha-1 – 10 738 kg ha-1 where LSD5%=853kg; NK Cobalt: 10 998 kg ha-1 – 10 019 kg ha-1 where LSD5%=630 kg ha-1), while a significant difference between the second and third plant densities was observed only in one case (DKC 4995: 11 726 kg ha-1 – 10 738 ha-1 where LSD5%=853 kg). In all other cases, there was no statistical difference between the different
plant densities. -
Examination of the impact of sowing technology models on the ear, constiuent and yield parameters of the yield formation elements of maize hybrids of different genotypes
17-23Views:138Production year 2012 has been characterised by climatic extremities. The weather of this year can be considered very contradictory in terms of maize production. The droughty conditions of the winter and spring months had a negative effect on both germination and starting vigour. The favourable weather of May-July created ideal conditions for intensive growth and generative processes; however the lack of precipitation in August and September had a damaging effect on the development of yield composing elements and grain saturation processes as well. Under such circumstances, the sowing date models caused significant differences in the yield and quality of the hybrids belonging to different growth periods. The growing period of the maize hybrids has been shortened as a result of the unfavourable climatic conditions.
Based on the trial results, it is verifiable that short growing period hybrids can be securely sown in draughty years even with a later sowing date, however using a later sowing date in the case of longer growth period hybrids may result even in a yield loss of 2–3 t ha-1. In the case of early and average sowing dates, with given yearly conditions the hybrids of the observed FAO 370-390 hybrid group provided the best result (12.40 t ha-1, 10.99 t ha-1), while in the case of the third, late sowing date the yield dominance of the FAO 290-350 hybrid group is the most significant (10.08 t ha-1).
The analysis of the yield composing elements found that the P9578 hybrid has the highest shelling ratio, while its cob is the shortest. The P9494 hybrid has a high yield and the highest thousand grain weight, while the DKC 4983 has the longest cob and its thousand grain weight is above 300 g.
The results confirm the fact that DKC 4590 has the highest yield potential and starch content, while in terms of oil and protein content the Szegedi 386 and NK Octet hybrids are the most important.
-
Effects of the cropyear and the agronomical factors on agronomical elements of different sweet corn (Zea Mays L. convar. saccharata Koern.) genotypes in long-term experiment
105-110Views:116In the crop season of 2010 (rainy year), we studied the effect of three agrotechnical factors (sowing time, fertilization, plant density) and four different genotypes on the agronomical characteristics of sweet corn on chernozem soil in the Hajdúság. The experiments were carried out at the Látókép Experimental Farm of the University of Debrecen. In the experiment, two sowing dates (27 April, 26 May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and four genotypes (Jumbo, Enterprise, Prelude, Box-R) were used at two plant densities (45 thousand plants ha-1, 65 thousand plants ha-1). The amount of precipitation in the season of 2010 was 184 mm higher, while the average temperature was 0.8 oC higher in the studied months than the average of 30 years. Weather was more favourable for sweet maize at the first sowing date, if we consider the yields, however, if we evaluate the agronomical data and yield elements (number of cobs, cob length and diameter, the number of kernel rows, the number of kernels per row) it can be stated that the size of the fertile cobs was greater at the second sowing date due to the lower number of cobs. The largest number of fertile cobs was harvested in the case of the hybrid Enterprise (72367.9 ha-1) in the higher plant density treatment (65 thousand ha-1) at the fertilization level of N120+PK when the first sowing date was applied. The largest cobs were harvested from the hybrid Box-R (cob weight with husks: 516.7 g, number of kernels in one row: 45.7) at the lower plant density (45 thousand plants ha-1) in the second sowing date treatment. Cob diameter and the number of kernel rows were the highest for the hybrid Prelude.
-
Study of plant physiological parameters in winter oilseed rape (Brassica napus var. napus f. biennis L.) production on chernozem soil
111-115Views:259We made plant physiology examinations in Arkaso winter oilseed rape hybrid substance: relative chlorophyll content (SPAD) and leaf area index (LAI) measurements. The experiment was set in University of Debrecen Agricultural Sciences Center at Látóképi Experimental Station in four replications, in two different sowing times (I. sowing date on 08/22/2014 and II. sowing date on 09/09/2014 sowing againhappened because of the incomplete germination in the second subtance 01/10/2014) Three different plant density 200, 350 and 500 thousand ha-1, under the same nutrient supply, 45 cm row spacing. The experiment was green crop of winter wheat. The relative chlorophyll content (SPAD) and leaf area index (LAI) measurements were made in seven different times. We measured the maximum value of chlorophyll content in the first sowing time at 500, and the second sowing time at 350 thousand ha-1 plant density. The measurement results proved that there was a linear relationship between the number of plants and the LAI. The maximum leaf area index values we measured in both the sowing time at 500 thousand ha-1 reached.
-
The effect of sowing date and plant density in three maize hybrids germination and growth dynamics
105-110Views:194The maize research was set up on chernozem soil at Látókép research area of the Centre for Agricultural Sciences University of Debrecen. We examined the following hybrids SY ARIOSO (FAO 300), P9486 (FAO360), DKC 4943 (FAO 410). The experience was set u pin three different plant density. These were 60, 76 and 90 thousand plant ha-1. The experience was set up in three different sawing date, early, average and late. The germination and growing dynamic measurements was measured in three hybrid, three sawing date, three plant density in four replication. well observed at the first sawing date (April 5) the soil was too cold therefore the germination was begins very slowly to be slowly increased. The second sowing time was the average (April 21) there the germination launch as soon as possible more rapid growth in the amount of heat. We experienced the most intense germination was in the case of the emergence late sowing date (May 5). Looking at the growth dynamics for the first two sawing date was side by side and almost equal to the maximum value. This is explained by the adaptive capacity of the maize to compensate for the sawing difference. For the third time, despite the delayed sawing the maize began to grow more dynamically than in previous sawing times due to the results of the initial good conditions it growth faster than halted in the second half of the season because of the high temperatures and lack of precipitation.
-
The impact of sowing date, production area and nutrient supply on the yield and quality parameters of millet
105-109Views:115The millet is a very special plant with good adaptation that gives the possibility for the late sowing and secondary production. However the effects of late sowing modifies to the efficiency of the agrotechnological elements. The examinations – focused on this aspect – was conducted in the DU CAS RINY in the small plots in four replications in 2013. The largest effect was recorded in the sowing time of the examined factors (sowing time, nutrient supply, growing area). The effectiveness of the agrotechnological elements decreases under unfavourable circumstances caused by the late sowing. The examined factors did not affect in the protein content and milling rate, except in the latest sowing time when protein content was significantly the highest.
-
Technological development of sustainable maize production and its effect on yield stability
379-388Views:204In 2015 and 2016, we examined the effect of NPK nutrients, sowing date and plant density on yield on typical meadow soil. The amount of precipitation was 282.0 mm in 2015 (January–September), 706.0 mm in 2016 and the 30-year averageis 445.8 mm.Agrotechnical factors:– Experiment a)5 Dow AgroSciences hybrid with three sowing dates and three plant densities– Experiment b)In 2015 eight, in 2016 ten hybrids with different genetic characteristics and growing seasons, with control (without fertilization), N80+PK and N160+PKtreatments, five plant densities (50–90 thousand) with 10 thousand plants difference between the different densities.
In a drought year, we reached the higher yield in the earlier sowing date and with the lower lower plant density of 70 thousand plants ha-1-. The maximum yield, depending on the agrotechnical factors, was 10–12 t ha-1 in 2015, while in 2016 it was 14–16 t ha-1. Yield stability can be increased using hybrid-specific cultivation techniques. -
Agronomic research in Martonvásár, aimed at promoting the efficiency of field crop production
89-93Views:151The effect of crop production factors on the grain yield was analysed on the basis of three-factorial experiments laid out in a split-split-plot design. In the case of maize the studies were made as part of a long-term experiment set up in 1980 on chernozem soil with forest residues, well supplied with N and very well with PK. The effects of five N levels in the main plots and four sowing dates in the subplots were compared in terms of the performance of four medium early hybrids (FAO 200). In the technological adaptation experiments carried out with durum wheat, the N supplies were moderate (2010) or good (2011), while the P and K supplies were good or very good in both years. Six N top-dressing treatments were applied in the main plots and five plant protection treatments in the subplots to test the responses of three varieties.
The results were evaluated using analysis of variance, while correlations between the variables were detected using regression analysis.
The effect of the tested factors on the grain yield was significant in the three-factorial maize experiment despite the annual fluctuations, reflected in extremely variable environmental means. During the given period the effect of N fertilisation surpassed that of the sowing date and the genotype. Regression analysis on the N responses for various sowing dates showed that maize sown in the middle 10 days of April gave the highest yield, but the N rates required to achieve maximum values declined as sowing was delayed.
In the very wet year, the yield of durum wheat was influenced to the greatest extent by the plant protection treatments, while N supplies and the choice of variety were of approximately the same importance. In the favourable year the yielding ability was determined by topdressing and the importance of plant protection dropped to half, while no significant difference could be detected between the tested varieties. According to the results of regression analysis, the positive effect of plant protection could not be substituted by an increase in the N rate in either year. The achievement of higher yields was only possible by a joint intensification of plant protection and N fertilisation. Nevertheless, the use of more efficient chemicals led to a slightly, though not significantly, higher yield, with a lower N requirement. -
Examination of plant number and sowing date in different crop years
79-82Views:119We examinated three agrotechnical factors in 2011, 2012 and 2013 (sowing time, nutrient factor and plant density), as well as five different effects of genotypes on the crop of corn, on brown soil in the Hajdúság. The experiment was set next to the 47 main road in Debrecen, at the 6th kilometre stone.
In the present processing I would like to touch on the effects of sowing time and plant density, as I do not have the chance to present the whole experiment results here. It is true for all three years that the humidity factors differ from the long years’ average, so the genotypes had different reactions on it. According to our results we found out that the late sowing time’s result had the most successful crop yield result with 9975 kg ha-1, while examining the plant density the result of the highest plant density proved to be the best with 9967 kg ha-1.
We take the critical season in corns’ life cycle process into consideration when examining the results: June, July and August months’ humidity and temperature markers. According to the results in the tested 3 months we had 227 mm humidity with 10 days, when the average temperature was over 25 °C. The same factors in 2012 were 135.5 mm humidity with 37 days of average temperatures of 25 °C and in 2013 we recorded 102.5 mm humidity with 24 of these days.
Our goal is to help the farmers in the Hajdúság with the results of our sowing times, hybrid choice and plant density results.
-
Correlation between cultivation methods and quality in some vegetable species
313-317Views:150Quality parameters of 5 table root varieties were tested on 3 sowing dates with different cultivation methods: open field on 15 April and 9 July 2010 and under plastic tents on 19 August. The highest red pigment content (betanin) was measured in the varieties Akela and Mona Lisa (~ 80 mg 100 g-1) of the second (July) crop. This crop is in general use in Hungary. In comparison, in the late sown varieties (August, under plastics) a further pigment increase (10–20 mg 100 g-1) was observed in the same varieties as related to the earlier sowing dates. Yellow pigments (vulgaxanthins) showed similar trends. Roots of the late sowing date (with harvest in December) contained the highest vulgaxanthin values (103.3–124.18 mg kg-1).
Varieties reacted differently to temperature changes during the production period and thus to sugar accumulation. In the second crop (July) higher water soluble solids content was measured on the average of varieties (10.12%) in comparison to the April sowing (7.76%). Beetroots of the spring sowing are recommended for fresh market while the second (July) crop with autumn harvest can satisfy industry requirements. Late sowing under unheated plastic tents supply us with fresh beetroot in late autumn and early winter and prolong the usability of plastic tents.
Six lettuce species/subspecies were tested in the open field and under plastic tents in 3 repetitions for nitrate nitrogen, vitamin-C, polyphenol (gallus acid equivalent – mg GAE 100 g-1) and mineral element (Ca, K, Mg, Na) contents. Our measurements showed lower nitrate nitrogen values under plastic than in the open field (89.10± 8.13 and 127.06±14.29 mg kg-1) on the average of genotypes. Lettuce grown in the field had higher vitamin-C content (1.4 mg%) which is nearly 50% more than in plants under plastic. The highest polyphenol content was found in samples from the field with a conspicuous value of 804.17±56.47 mg GAE 100 g-1 in Piros cikória. Samples grown under plastic were richer in mineral elements (Ca, K, Mg, Na) which can be explained by the higher nutrient content of the soil. In this environment superior Mg content was observed in Edivia (4616.33±
311.21 mg kg-1).Besides the well- known headed lettuce, Piros cikória (Red chicory),the red leaved Lollo Rossa and Tölgylevel (Oak leaf lettuce) should be
mentioned which well deserve further testing in order to supply us with nourishing, healthy food. -
Performance of agricultural factors on yield of sweet corn (Zea mays L. Saccharata ) - A review
143-156Views:150Sweet corn producers and industries require more reliable cultivars which could be accomplished by hybrid breeding. However, progressive phenological growth may be affected by different factors. In this paper, we analyze the key factors that determine the growth and yield of sweet corn. Environmental factors such as temperature and photoperiod were strong determinants of dates of flowering and harvest which are often crucial to yield in diverse climates and agricultural systems, besides the country's pedological conditions, especially soil fertility, affected phenological development. The effectiveness of fertilization in improving sweet corn growth performance was significantly influenced by the soil characteristics, the water supply, the genotype, and the agrotechnological factors. Therefore, genetic improvement of hybrids should be incorporated into the climate and soil elements to stabilize sweet corn yields in various agroecosystems. Decisions made in the sowing period are very significant, as up to 30% of the obtained yield may depend on making the proper choice. Deviation from the optimum date (either early or late sowing) may decrease yield. When deciding about the sowing date of maize, one needs to consider climate, soil quality, geographical location, temperature, weed infestation, sowing seed quality, and the ripening time of the hybrid to be produced.
-
Role of Sowing Time in Maize Production (Review)
36-39Views:93Many authors, both in Hungary and abroad, have reported on experiments carried out to determine the role of sowing time in maize, but the results are often contradictory. This is hardly surprising, since the maize plant exhibits enormous genetic variability and the hybrids created through selection and inbreeding may have very specific requirements as to sowing date. The year effect, too, often complicates the efforts of scientists to provide clear guidance to farmers on the optimal sowing date for each hybrid.
-
The main influencing factors effecting the yield of maize
137-141Views:115Maize is one of Hungary’s major cereals. In the 1970s and 1980s, we were in the frontline regarding yields and genetic advancement. However, yield fluctuation in maize has increased to 50-60% from 10-20% since the 1980s, which was partly caused by the increase in weather extremes due to climate change and by agrotechnical shortcomings.
The experiments were carried out on typical meadow soil in four repetitions in the period of 2007-2008. In the sowing time experiment, sowing was performed on 10 April, 25 April, 15 May under a uniform fertilization of N120, P2O580 K2O 110 kg/ha. In the fertilization experiment, the yielding capacity of 10 hybrids with different genetic characteristics was studied in a control (non-fertilized) treatment and basic treatment of N40 P2O5 25, K2O 30 kg ha-1 active ingredient and a treatment with fivefold dosages of the basic treatment. In the plant density experiment, the relationship between plant density and yield was analysed at plant densities of 45, 60 and 75 thousand plants per ha. We found a tight correlation between sowing time and yield and grain moisture content at harvest. We found that grain moisture can be reduced by 5-10% by applying an earlier sowing time.
The agroecological optimum fertilizer dosage was N 40-120, P2O5 25-75, K2O 30-90 kg ha-1 active ingredient at a plant density of 60-90 thousand plants ha-1 depending on the hybrid and the year. -
The impact of crop year and certain agrotechnical factors on maize yield
13-16Views:129The experiment was set up with eight maize hybrids with different genetic characteristics in 2012. In our study were included hybrids with different length of growing season. We studied the effect of NKP fertilization and plant density on the yield. Comparing to controll treatment it was found that highest yield was at N40+PK treatment. It was three times higher than agro-ecological optimum. Due to the droughty year the effect of plant density it was minimum. The development rate in case of sowing date I. and II. showed an almost identical picture in the scope of the sowing date trial. However, hybrids with excellent adaptability were capable of a yield above average even in this extreme year.
-
The effect of sowing date and plant density on the yield of maize (Zea mays L.) under different weather conditions
205-208Views:319Maize has high productivity and produces huge vegetative and generative phytomass, but this crop is very sensitive to agroecological (mainly to climatic, partly to pedological conditions) and agrotechnical circumstances. In Hungary, maize is grown on 1.1–1.2 million hectares, the national average yields vary between 4–7 t ha-1 depending on the year and the intensity of production technology. The longterm experiment was set up in 2015–2016 on chernozem soil in the Hajdúság (eastern Hungary). The maize research was set up on chernozem soil at the Látókép MÉK (Faculty of Agricultural and Food Sciences and Environmental Management) research area of the University of Debrecen. We examined the following commonly used hybrids of Hungary: SY ARIOSO (FAO 300), P9074 (FAO 310), P9486 (FAO 360), SY Octavius (FAO 400), GK Kenéz (FAO 410), DKC 4943 (FAO 410). The experiment was set up in three different plant densities. These were 60, 76, 90 thousand plant ha-1. The experiment was set up with three different sowing dates, early, average and late sowing. The yield was measured using a special plot harvester (Sampo Rosenlew 2010), measuring the weight of the harvested plot and also taking a sample from it. As a next step, we calculated the yield (t ha-1) of each plot at 14% of moisture content to compare them to each other. We evaluated the obtained data using Microsoft Excel 2015.
-
The scientific background of competitive maize production
33-46Views:326The effect and interaction of crop production factors on maize yield has been examined for nearly 40 years at the Látókép Experiment Site of the University of Debrecen in a long-term field experiment that is unique and acknowledged in Europe. The research aim is to evaluate the effect of fertilisation, tillage, genotype, sowing, plant density, crop protection and irrigation. The analysis of the database of the examined period makes it possible to evaluate maize yield, as well as the effect of crop production factors and crop year, as well as the interaction between these factors.
Based on the different tillage methods, it can be concluded that autumn ploughing provides the highest yield, but its effect significantly differed in irrigated and non-irrigated treatments. The periodical application of strip tillage is justified in areas with favourable soil conditions and free from compated layers (e.g. strip – strip – ploughing – loosening). Under conditions prone to drought, but especially in several consecutive years, a plant density of 70–80 thousand crops per hectare should be used in the case of favourable precipitation supply, but 60 thousand crops per hectare should not be exceeded in dry crop years. The yield increasing effect of fertilisation is significant both under non-irrigated and irrigated conditions, but it is much more moderate in the non-irrigated treatment.
Selecting the optimum sowing date is of key importance from the aspect of maize yield, especially in dry crop years. Irrigation is not enough in itself without intensive nutrient management, since it may lead to yield decrease.
The results of research, development and innovation, which are based on the performed long-term field experiment, contribute to the production technological methods which provide an opportunity to use sowing seeds, fertilisers and pesticides in a regionally tailored and differentiated way, adapted to the specific needs of the given plot, as well as to plan each operation and to implement precision maize production.
-
The importance of millet production in regional production, with special emphasis on climate change
141-146Views:185Regional production is a traditional production structure developed adjusting to the geographical, climatic, biological and soil conditions in given production regions, a certain territorial specification of agricultural production, and a type of farming that best fits the natural conditions and takes the biological needs of plant and animal species into account as fully as possible. The most probable element of risk in plant production is the changeable, extreme weather. That is the reason why the specific characteristics of the place of production and the characteristics of regional production should be considered to a greater extent. The establishment of the range of varieties appropriate for the place of production is the key issue in regional production. One of our historically grown cereal plants that perfectly fits regional production is millet. Due to its short growing season, favourable reproduction ratio and the fact that it is relatively undemanding, it used to be grown in larger quantities in the middle ages. Its good nutritional values made it an important food item, but over time, as a result of industrialisation and technological progress; it has been eclipsed by other cereal crops. In our country it is mainly used to cook porridge, but it is also used in the form of flour and as a base material in the spirit drinks sector. In the recent decades, millet has been applied only in a small area, mostly as a secondary crop in areas that dried out from drainage water in late spring, or as a replacement of extinct sowings due to its late sowing time. Water will be the most significant factor for the future of agriculture, especially considering climate change.My examinations took place in the area of the Institutes for Agricultural Research and Educational Farm of University of Debrecen, in the Research Institute of Nyíregyháza, in a small-plot experiment with four replications in 2016. -
The effect of sowing date and plant density of winter oilseed rape (Brassica napus var. napus f. biennis L.) population
213-215Views:200The experiment has been set up in the University of Debrecen Látókép Experimental Station in three different years (2014, 2015 and 2016), three different plant densities 200, 350 and 500 thousand ha-1, four replications of the same nutrient supply with using a line spacing of 45 cm. In the experiment, the fore crop was winter wheat in each year. The amount of weeds was observed five times in the last experimental year (2016/2017). In the three experimental years, the highest yield was harvested from the early sowing plot with the highest plant density. On the basis of the Pearson’s correlation analysis there was significant negative correlation (r=-0.583) between the effect of the annual year and yield of the hybrid.
-
Motivation for and Possibilities of Increasing Table Beet Root Cultivation
131-135Views:141Due to its manifold nutritional-physiological effects, table beet root would deserve more attention. Its active components and their role in human therapy and prevention should rank it higher in our list of vegetables.
The actual some 100 ha area under beet root could be considerably increased, if its role in nutrition and its varied products were universally known.
Most of the physiologically favourable effects are related to its pigment content. Pigment content can be increased by choosing proper varieties and applying cultural methods which, favourably influence red pigment synthesis (optimal sowing date).
The high Mg-content and advantageous ion ratio must also be mentioned. They can be increased by Mg leaf fertilisation, as can solids content and foliage resistance.
The special knowledge accumulated in literature ought to be made known to experts so as to help them to set up trials and to introduce results into practice. -
Evaluation of mineral element content of beetroot during the different stages of the growing season
459-469Views:292In modern nutrition, bioactive materials of different vegetables are especially important to be researched. The experiment was carried out on March 30, 2016 (sowing date). Mineral element content (B, Ca, Cu, Fe, K, Mg, Na, P, S, Zn) was evaluated on the 60th, 85th and the 105th day of the vegetation period. The data are presented as the mean of five varieties which can give the real state of these parameters of beetroot grown on lowland chernozem soil.
In the young beetroot leaves (60 days) the mineral element content was higher than in the older ones (85 days). The calcium and magnesium content of the leaves was much more favourable (10 times higher) than in the root. The potassium content of leaves has reached the amount of 5000 mg kg-1, but at the same time more than 3000 mg kg-1 was detected in the improved root. This value is favourable for the potassium supply of the human organism.
The sulphur content (1300 mg kg-1) of the leaves was the highest on the 85th day of vegetation period. Similar tendency was detected for boron content (2.45 mg kg-1), while for iron content it was higher (28.23 mg kg-1) in the younger leaves (60 days).
Finally, it can be concluded that the increased element content of beetroot leaves will be a favourable source of mineral element supply of the human organism.