Search

Published After
Published Before

Search Results

  • The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
    143-147
    Views:
    156

    In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.

    Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.

    The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.

    In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.

    The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.

    However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.

    As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.

  • Determining factors of test weight in maize (Zea mays L.)
    40-42
    Views:
    92

    Most domestic maize production products are sold on markets abroad. Among the increasingly restrictive quality requirements, the demand for the measurement of test weight has also appeared. This measurement is not unfamiliar in the case of other cereals, such as wheat and barley, but it has not been applied widely in maize. It is likely for this reason that we have such little information and research available on this topic. In this study, we show the current state of this field with references from domestic and international literature.
    The density of maize is the weight of a particular volume and the most frequent unit is the test weight (kg/hl). This physical quality factor plays important roles in the storage, transport and mill industries. The value of test weight is influenced by many factors. The most important ones are the moisture content of grains, drying temperature, drought, precipitation, early frost, and the hybrid characters of a given genotype (grain type, FAO number). In general, the grain with higher moisture content has lower test weight and the higher temperature during (above 82°C) desiccation also leads to unfavourable values. Factors such as a drought interval after flowering, early frost in the case of hybrids with higher FAO numbers, injuries by insects, as well as fungal infections also influence the structure and moisture content of the maize grain.
    In the future, broader studies (hybrid testing, application of new agrotechnical elements) will be needed for understanding of the factors effecting test weight.

  • Examination of Zn deficiency on some physiological parameters in case of maize and cucumber seedlings
    5-9
    Views:
    82

    Zinc (Zn) is an essential micronutrient needed not only for people, but also crops. Almost half of the world’s cereal crops are deficient in
    Zn, leading to poor crop yields. In fact, one-third (33%) of the world's population is at risk of Zn deficiency in rates, ranging from 4% to
    73% depending on the given country. Zn deficiency in agricultural soils is also a major global problem affecting both crop yield and quality.
    The Zn contents of soils in Hungary are medium or rather small. Generally, the rate of Zn deficiency is higher on sand, sandy loam or soil
    types of large organic matter contents. High pH and calcium carbonate contents are the main reasons for the low availability of Zn for
    plants (Karimian and Moafpouryan, 1999). It has been reported that the high-concentration application of phosphate fertilisers reduces Zn
    availability (Khosgoftarmanesh et al., 2006). Areas with Zn deficiency are particularly extensive in Békés, Fejér and Tolna County in
    Hungary, yet these areas feature topsoils of high organic matter contents. Usually, Zn is absorbed strongly in the upper part the soil, and it
    has been observed that the uptakeable Zn contents of soil are lower than 1.4 mg kg-1.
    Maize is one of the most important crops in Hungary, grown in the largest areas, and belongs to the most sensitive cultures to Zn
    deficiency. Zn deficiency can causes serious damage in yield (as large as 80 %), especially in case of maize. On the other hand, Zn
    deficiency can also cause serious reduction in the yields of dicots. One of the most important vegetables of canning industry is cucumber,
    which is grown all over the world.
    In this study, the effects of Zn deficiency have investigated on the growth of shoots and roots, relative and absolute chlorophyll contents,
    fresh and dry matter accumulation, total root and shoot lengths, the leaf number and leaf area of test plants in laboratory. Experimental
    plants used have been maize (Zea mays L. cv. Reseda sc.) and cucumber (Cucumis sativus L. cv. Delicatess). A monocot and dicot plant have
    chosen a to investigate the effects of Zn deficiency, because they have different nutrient uptake mechanism.
    It has been observed that the unfavourable effects of Zn deficiency have caused damage in some physiological parameters, and
    significantly reduced the growth, chlorophyll contents of monocots and dicots alike.

  • The effect of hybrid, nutrient-supply and irrigation on the grain moisture content at harvest and the starch-content of maize (Zea mays L.)
    89-95
    Views:
    102

    Maize is a worldwide dominant plant. According to nowadays plant production principles it is important to investigate and optimize the site-specific nutrient-supply and other production factors, such as hybrid and irrigation, in the case of this plant as well.
    At the Research Institute of the University of Debrecen, Center of Agricultural Sciences and Engineering, at Látókép the effect of nutrient-supply and irrigation on the quantity and quality parameters of different hybrids were investigated in a small plot long-term field experiment. In this paper we introduce the results regarding the corn moisture-content and the starch content of the yield.
    We have chosen three maize hybrids – that have been bread in Martonvásár – for our investigations. The effect of macronutrients is investigated in this experiment on five levels. The half of the experimental area can be irrigated during the vegetation period – whenever it is needed – by linear irrigation equipment, but on the other half only the water amount originating from the precipitation can be used by plants.
    In the year 2008 the hybrid affected the grain moisture content at P=0.1% level, while nutrient-supply had an effect at P=10% significance level. We haven’t revealed either any effect of irrigation or of interrelationship between production factors. It can be stated that there are differences between the hybrids on each nutrient-supply and on both irrigation levels. The grain moisture content increased parallel to the longer vegetation
    periods.
    The starch content of maize is mostly affected by the hybrid,
    so on P=0.1% significance level. Regarding our results, it can be
    stated, that the starch content shows a decreasing tendency
    parallel to the longer vegetation periods.

  • Inheritance of Plant and Ear Height in Maize (Zea Mays L.)
    34-38
    Views:
    364

    Plant and ear height are very important characters not only for describing new varieties of maize (Zea mays L.), but for green and dry matter production, and even for grain yield. Significant positive correlations have been reported by various authors between plant height and stover yield, plant height and dry matter yield, and plant height and grain yield. The height of the main ear is also correlated to plant height. It depends on the variety or the environment, but is likely to be the same height within a population. Many environmental and agronomical factors (e.g. plant density, fertilization, pests and diseases) influence the expression of these characters, which are not quality traits. Their expression is controlled by many genes and by the interactions between these genes. The heritability of these traits is high and they show significant genotypic variability and positive heterosis, as reported in many research publications.

  • The effect of drought and cropping system on the yield and yield components of maize (Zea mays L.)
    51-53
    Views:
    122

    Different Cropping Systems have many advantages and ensure better crop growth and yielding. Its combination with other agronomic measures can ensure optimal crop density for maximum crop growth and photosynthesis efficiency. The aim of this study was to investigate the influence of different cropping systems on monoculture and biculture rotations [maize- wheat]. The study found that crop rotation does not have a significant effect on the grain nutrition quality, Leaf Area Index (LAI) and Normalized Difference Vegetative Index (NDVI) but has a significant effect on the Soil-Plant Analysis Development (SPAD). Yield and yield components were significantly influenced by crop rotation in this study as yield, plant height, cob weight and number of grains per row all recorded lower mean at 5% probability levels.

  • Comparison of Pálfai’s drought index and the Normalised Precipitation Index in the North Great Plain region
    59-64
    Views:
    152

    Agriculture has always been an important role in economy, food supplies, sustainability of society and creation of job opportunities in Hungary. Our country has resource-related strength of agriculture, because we have more than 4.5 million ha for agricultural production. Agricultural production can be influenced by several factors, including climate, hydrology, soil conditions and antropogenic impacts. Climate determines the quality and quantity of the crop yields. The climate conditions in Hungary are variable and it shows spatial and temporal extremes. As a result of this, drought have become more frequent in our country (2003, 2007, 2009, 2012), which is reflected in the decline in yields as well. In the present study, Pálfai's Drought Index (PAI) and the Standardized Precipitation Index (SPI) were compared 2003–2012 in Debrecen. The temperature and precipitation data were calculated from data provided by a local meteorological station to work out PAI, while the SPI-3 index values were downloaded from the database of the European Drought Observatory. This allowed to drought assessment in a local and regional scale. Our study was supplemented with SPI-3, soil moisture anomalies, PAI and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) to evaluating the impact of drought on agriculture.

  • Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
    121-126
    Views:
    74

    Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
    The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
    In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
    On the basis of results the following can be stated: 
    1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
    inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
    2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
    3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
    4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.