Search



Show Advanced search options Hide Advanced search options
The effects of agrotechnological factors on winter wheat yield in humid cropyear
Published October 5, 2010
162-167

The effects of crop rotation, nutrien supply and crop protection technologies, as well as the appearance of the main ear- and leafdiseases
(powdery mildew, helminthosporium leaf spot, leaf rust, fusarium) were studied on the crop yields of winter wheat variety MV
Pálma during the 2009/2010 crop year. The experiments were conducted in tri...culture (pea – wheat – corn) and biculture (wheat – corn), at
five nutrition levels, with the use of three crop protection technologies (extensive, conventional and intensive) at the Látókép Research Site of
the University of Debrecen, Centre of Agricultural Sciences. Our results proved that the appearance of leaf- and ear-diseases were
significant in the wheat cultures during the 2009/2010 crop year, because of the rainy, warmer than usual weather, the lodging, and the huge
vegetative mass developed. The most severe infections by the four examined diseases after pea and corn pre-crops were observed at
extensive crop protection levels, when fertilizers were used at the highest dose.
Following corn pre-crop, in the case of all the three crop protection technologies the maximum rate of wheat yield results were achieved
at N150+PK level. The highest yield was reached at intensive crop protection level (6079 kg ha-1). In triculture, in case of all the three crop
protection technologies the maximum yields were achieved at N50+PK level; in extensive technology 5041 kg·ha-1 yield, in conventional
technology 6190 kg ha-1 yield was realised, while in the intensive technological model the yield was 7228 kg ha-1.
The relationship between yield and fertilizer amounts, the rate of pathogen contaminations, crop protection technologies and pre-crops
was defined with correlation analysis in case of different crop rotations during the 2009/2010 crop year. Based on the results of the
experiment, we found that in stands after corn pre-crop strong positive correlation was established between the crop protection level and the
crop yield (0.543), the nutrient levels and the emergence of the four examined pathogens, and between the nutrient levels and the yield
(0.639). Extremly strong positive correlation was observed between crop protection and yield (0.843) in triculture. Strong positive
correlation was detected between the nutrient levels and the presence of the four examined pathogens, as well as between nutrient and
lodging (0.688). Strong negative correlation was between the crop protection level and the four examined diseases both in biculture and
triculture.

Show full abstract
34
52
The effect of crop protection and agrotechnical factors on sunflower in the Hajdúság region
Published October 5, 2010
39-46

Extreme weather conditions are becoming more and more frequent in the crop years, thus increase the risk of sunflower production.
The objective of researches into plant production is to minimize these effects as much as possible. In this sense, the optimization of
agrotechnological factors is of high importance. Within these factors, the ...appropriate crop technology (sowing time, crop density)
and optimized, rational crop protection technologies are important, especially in the highly sensitive sunflower cultures. The effect of
sowing time, crop density, and fungicide treatments on the yield of sunflower hybrids was analysed in different crop years in 2008
and 2009. In each case, the infection was highest with the early sowing time and at the highest crop density level (65000 ha-1). When
one fungicide treatment was applied, the rate of infection decreased compared to the control treatment. The further decrease of the
infection rate was less after the second fungicide treatment.
In the humid year of 2008 the crop yield was the highest at 45000 ha-1 crop density level in the control treatment and at 55000 crop
ha-1 crop density level when fungicides were applied. In the draughty year of 2009 the maximum yield was gained at 55000 ha-1 crop
density level in the control treatment and at 65000 crop ha-1 when fungicides were applied. In 2008 and 2009 as regards the crop
yield, the difference between the optimal and minimal crop density levels was higher in the fungicide treatments than in the control
treatment (in 2008: control: 517 kg ha-1; one application of fungicides: 865 kg ha-1; two applications of fungicides: 842 kg ha-1), (in
2009: control: 577 kg ha-1; one application of fungicides: 761 kg ha-1; two applications of fungicides: 905 kg ha-1).
In each and every case, the first treatment with fungicides was more effective than the second. In 2008, the highest yield was
obtained with the third, late sowing time in each fungicide treatment. The differences between the crop yields with different sowing
times was less than in 2009, when the results of the second treatment exceeded those of the first and third treatment in each case.

Show full abstract
38
50
Site and hybrid-specific agrotechnical models in sweet corn production
Published November 20, 2011
105-108

The effect of three agrotechnical factors (sowing time, fertilization, plant density) and two genotypes on the crop yield of sweet corn was examined on chernozem soil in the Hajdúság region in two different crop years. Compared to the 30-year average, the climate was dry and warm in 2009 and humid in 2010. The experiments were conducted at th...e Látókép Research Site of the University of Debrecen. In the experiments we applied two sowing times (end of April, end of May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two crop density levels (45 thousand ha-1, 65 thousand ha-1). The hybrids we used were Jumbo and Enterprise. As regards the requirements of sweet corn production, the crop year of 2009 was dry and warm. The effect of moisture deficiency was more adverse on the crop yields with the second sowing time. On the contrary, the other examined year (2010) was significantly humid; the precipitation was 184 mm above the 30-year average and the temperature was average.
In the dry and hot crop year, the best yields were obtained with the hybrid Jumbo (25677 kg-1) at 65 thousand ha-1 plant density level on the average of the fertilization levels. The crop yields of Enterprise were also the highest at high plant density level (24444 kg ha-1). With the second sowing time the highest yields were obtained at the higher plant density level (65 thousand ha-1) with both hybrids (Jumbo 18978 kg ha-1, Enterprise 18991 kg ha-1), which confirmed the good adaptation capability of these hybrids at high plant density level. In humid crop year with early sowing time the highest yielding hybrid was Enterprise (at 45 thousand ha-1 crop density level 20757 kg-1), at the same time, Jumbo was best yielding at the higher plant density level (18781 kg-1). With the second sowing time the highest crop yield was obtained with Enterprise again (20628 kg ha-1 at 65 thousand ha-1 plant density level). With this sowing time the average yields of Jumbo, was 18914 kg ha-1 respectively. We found that dry crop year and early sowing time provided the best conditions for sweet corn production; the highest yields were obtained under these circumstances, which might be the results of the outstanding water management of chernozem  soils.

Show full abstract
54
85
Evaluation of reaction to plant density of sunflower hybrids by regression and Kang’s stability analysis
Published December 21, 2008
101-109

The world production area and the total production of sunflower has significantly been growing. The harvested yield was 23.4 and 21.1 million ha in 2005 and 2001, respectively. The total sunflower seed production has also unexpectedly increased.
Although sunflower is produced on lower quality soils in Hungary, in 2005 the average harvested y...ield was 2.43 t ha-1, which was the highest in the world. 
Sunflower is a typical commercial plant and fits well in the crop structure. Since in terms of acreage the most significant crops are corn and cereals, the partial monoculture cultivation cannot be avoided. Sunflower production is a way to eliminate this problem, therefore it has an important role both in cultivation and ecological points of view.
Accordingly, sunflower has an important role in reducing the monoculture cultivation of some plants, as well as increasing biodiversity. Sunflower well adapts to Hungary’s climatic conditions and its production is easily practicable in our country.
The reaction of sunflower hybrids on crop density change is different. Some hybrids are more some are less sensitive to this parameter. In different crop years, the crop density optimums of the different genotypes are also different. In Hungary, the yield and quality is primarily determined by fungal infections, while viruses and bacteria are less important.
The research was conducted at the Látókép farm and Regional Research Institute of the University of Debrecen, Centre of Agricultural Sciences. The research institute is situated by Road 33,15 km from Debrecen in the Hajdúság. The duration of the experiment was seven years, 10 hybrids were examined in each year.
Two hybrids used every year, Aréna/PR and Alexandra/PR hybrids were tested by Kang’s stability analysis. We found that Alexandra/PR was most balanced at every levels of crop density. Both hybrids performed most stable yield at 65000 ha-1 crop density level and less balanced at 35000 ha-1 crop density level. As a result of improved environmental conditions, the yield increase of Aréna/PR was higher than that of Alexandra/PR.
Our regression analysis found that the maximum yield of Lympil, Louidor, Hysun 321, PR63A82 and PR64A63 hybrids were harvested at 47000-60000 plant ha-1 crop density level. The statistical analysis showed that the highest yield was harvested from Lympil and Hysun 321. As regards the crop yield, the most stable hybrids were Louidor and Lympil. The optimum crop density interval of Rigasol/PR and Larisol (58000 plant ha-1) was wider than that of Diabolo (46000 plant ha-1). The maximum yield of Larisol was higher at the optimal crop density level. As regards yield, Diabol was the most stable hybrid.
The statistical analysis on the stability of the yield of Alexandra/PR and Aréna/PR showed that Aréna/PR is more stable, and its optimal crop density level is lower than that of Alexandra/PR.

Show full abstract
47
90
The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
Published May 20, 2020
143-147

In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.

Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly... reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.

The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.

In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.

The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.

However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.

As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.

Show full abstract
75
77
The impact of climatic factors on the relative chlorophyll content and yield of a maize hybrid in a long-term experiment
Published May 23, 2019
71-77

The impact of the climatic factors of crop year on the relative chlorophyll content of maize was examined for three years. The examinations were carried out on the Látókép Experiment Site of the University of Debrecen on calcareous chernozem soil in a small-plot, non-irrigated long-term field experiment with strip plot design. In addition to... a non-fertilised (control) treatment, nitrogen (N) fertiliser doses were applied as base and top dressing. The 60 and 120 kg N ha-1 base dressing doses were followed by two top dressing doses at the V6 and V12 phenophases.

Averaged over the different fertiliser treatments, SPAD readings increased in all three years as the growing season progressed. The highes SPAD value increase was observed in the average crop year (2017) at the V12 phenophase (11.8), which further increased at the R1 phenophas, by 3,7. No significant Spad value difference was observed between the average (2017) and the dry year (2018) at the V6 growth phase. However, in the wet crop year (2016), the V690 treatment provided the statistically highest relative chlorophyll content (46.8). At the V12 phenophase, the base dressing dose of 120 kg N ha-1+30 kg N ha-1 (V6150) showed to be successful in two years (2016 and 2018), while in 2017, the base dressing dose of A60 was successful. The impact of crop year on relative chlorophyll content can be clearly shown at the R1 growth stage. In all three years, the significantly highest relative chlorophyll content could be achieved at different nutrient levels: A60 in 2016, V6150 in 2017 and V690.

In a wet year (2016), higher yield could be achieved as a result of the 60 kg N ha-1 base dressing and 30 kg N ha-1 at the V6 growth stage (V690) as top dressing in comparison with 2017 and 2018, when higher fertiliser dose (120 kg N ha-1 base dressing and 30 kg N ha-1top dressing at the V6 growth stage) was needed to achieve a significant yield surplus.

Altogether, averaged over the different treatments, the highest yield (12.48 t ha-1) was observed in the wet year, when the relative chlorophyll content was also the highest (50.6).

Show full abstract
134
151
Using research findings in precision maize production
Published November 13, 2012
227-231

The effect of crop production factors on maize yield are examined on chernozem soil in a more than 30 year old long-term experiment on the Látókép Experiment Site of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. The aim of research is to evaluate the effect of fertilisation, cultivation, plant numbe...r, genorype and irrigation. The analysis of the data in the database of the examined period makes it possible to evaluate the effect of maize yield, as well as that of the crop production factors and the crop year, while the correlations and interactions between these factors were also examined. During the examination of the cultivation treatments, it was concluded that the highest yield was obtained as a result of autumn ploughing, but its effect largely differs in the irrigated and the nonirrigated treatments. Based on our examinations, strip cultivation should be applied periodically (e.g. strip – strip – ploughing – loosening) in areas with favourable soil conditions free from compacted layers. 
In years with smaller, average precipitation supply or when the precipitation was higher than average, higher plant numbers were more favourable. Under drier conditions, but especially in several consecutively dry years, a lower plant number can be recommended which is not higher than 60 thousand per hectare. In the case of favourable water supply, 70-80 thousand plants per hectare can be  used. The yield increasing effect of fertilisation was significant in the case of both non-irrigated and irrigated conditions, but it was much more moderate in the non-irrigated treatment. The extent of weed coverage was significantly affected by the previous crop. In the case of a favourable previous crop (wheat), the weed coverage was significantly lower than after an unfavourable previous crop (maize). In the case of the same previous crop (maize), the extent of weed coverage was mostly determined by the crop year and the extent of precipitation supply. Irrigation is not enough in itself, because if it was not accompanied by intensive nutrient management, yields started to decline.
The results of researhc, development and innovation contributed to the technological method which makes it possible to apply locally adjusted sowing seed, fertiliser and pesticide in a differentiated way, as well as to change the method of operations within the given plot.

Show full abstract
120
118
The Effect of Sowing Time and Plant Density on the Yield of MaizeHybrids
Published December 6, 2005
95-104

The crop technology of maize has two important elements, sowing time and plant density. In 2003 and 2004 we studied the effect of these two factors on the growth and production of maize in an experiment carried out near Hajdúböszörmény.
The soil of the experimental plots was meadow soil.
Weather in both years was differed greatly. 200...3 was drought. Neither the distribution nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
In 2004, we could talk about a favorable and rainy season. The distribution and quantity of precipitation was suitable between April and September. The average temperature was also suitable for maize.
Results of the sowing time experiment:
In 2003, we tested seven hybrids at four sowing times. Hybrids in the early maturity group gave the highest yield at the later sowing time, while the hybrids of the long maturity group gave it at the earlier planting time. The yield of PR34B97, PR36N70, PR36M53 hybrids was the best at every planting time. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
In 2004, we examined the yield and seed moisture content of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing time. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time than at the later.
The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.
Results of the plant density experiment:
We tested the reaction of hybrids at four plant densities (45,000, 60,000, 75,000 and 90,000 stock/ha) every two years. In 2003, the tested seven hybrids reached the highest yield at the 90,000 stock/ha in the face of a droughty year. The effect of forecrop and favorable nutrients caused these results. In the rainy 2004 year, the yield grew linear with the growing plant density. The yield of the best hybrids were 14-15 t/ha at the 90,000 stock/ha.
Such a high plant density (90,000 stock/ha) couldn’t adaptable in farm conditions in rainy season. It is practical to determine the interval of plant density besides the optimum plant density of hybrids which gave correct yield. The farmers have to use the low value of this interval due to the frequent of the droughty years.

Show full abstract
41
84
Evaluation of the yield and baking quality of winter wheat (Triticum aestivum L.) varieties in different cropyears
Published May 6, 2013
95-100

...5); font-variant-ligatures: normal; font-variant-caps: normal; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">We have investigated the effect of the cropyear, the genotype, the nutrient supply and their interactions on the yield and the quality parameters of three different winter wheat genotypes in three different cropyears. The most disadvantageous influence on the yield averages was caused by the moist weather of 2010, when yield results fell behind the mean of the two other examined years and the nutrient optimum was around low doses. The optimal cropyear turned out to be the ordinary 2011, the best yield results were experienced during this cropyear. Although the drier periods in 2012 decreased the yield values, the varieties could realize high yield maximum values. Considering the yield results, Genius turned out to be the best variety. In respect of the quality traits, 2010 turned out to be the best cropyear in case of all the three varieties. Despite the dry weather of the spring of 2012, the precipitation fell during flowering and ripening phases had positive impact on the grain-filling processes and contributed to the development of better quality. As a consequence of the significantly lower amount of precipitation during the generative phenological phases, the worst quality parameters were realized by the varieties in 2011.

 

In respect of crop year effect, 2010 was unfavourable for the amount of yield, but the most beneficial for the quality. 2011 was the most advantageous for the yield amounts but disadvantageous for the quality parameters. Although in 2012 extreme crop year effects were experienced after each other (dry and warm spring, moist and warm summer), the yield average and quality trait values were close to the yield averages of 2011 and quality parameters of 2010. Analyzing our results we can state that the average crop year was favourable rather for the yield. The appropriate amount of precipitation during the whole 2010 and that during the generative phenophases in 2012 favoured the development of good quality.

Consequently, the appropriate amount of precipitation is essential for the development of good quality during the grain-filling period. The negative crop year effects were only compensated but not eliminated by the good nutrient supply. Genius achieved excellent yield averages but performed worse quality parameters than Mv Toldi, whose quality parameters were outstanding but the yield averages fell slightly behind those of Genius. Considering the yield results, the variety Genius turned out to be the best, while Mv Toldi was the best in quality.

Show full abstract
73
103
Effect and interaction of crop management factors and crop year on the yield of maize (Zea mays L.)
Published December 1, 2020
31-41

The aim of this study was to determine the combination of treatment levels of crop management factors which can optimize and sustain maize yield under varying climatic conditions. The effect of winter wheat forecrop, three tillage systems (Mouldboard-MT, Strip-ST, Ripper-RT), two planting densities (60,000 & 80,000 plants ha-1...>), three fertilizer levels (N0-control, N80, N160 kg ha-1) with four replications in irrigated and non-irrigated treatments were evaluated over a five year period, 2015–2019. The obtained results revealed that growing season rainfall positively correlated with yield, whereas, temperature negatively correlated with yield. Impact of adverse weather on yield was less severe in biculture, irrigated plots, at lower planting density (60,000), lower fertilizer rate (N80) and in RT and ST, compared to MT. In years with favorable rainfall, yields of MT and RT were significantly (P<0.05) higher than ST. However, in a less favorable year, such as 2015, with 299 mm growing season rainfall and the lowest July rainfall (59% below mean) there was no significant difference (P>0.05) in yield among the three tillage treatments. Higher planting density (80,000), and fertilization rate (N160) in tandem with MT are treatments combination conducive for high yield under favorable climatic conditions, whereas, in years with low rainfall and high temperatures, RT and ST offer alternative to MT for optimum yield with 60,000 plants ha-1 and N80 treatment level. Crop year effect accounted for 20.7% of yield variance, fertilization 35.8%, forecrop 12.8%, plant density 3.4%, tillage 1.2% and irrigation <1%. It is conclusive that with proper selection of the appropriate levels of agrotechnological inputs the adverse effect of weather on yield can be mitigated.

Show full abstract
112
139
Long-term experiments on chernozem soil in the University of Debrecen
Published September 5, 2018
357-369

The impact of agrotechnical management practices (nutrient and water supply, crop rotation, crop protection, genotype) on the yields of winter wheat and maize and on the soil water and nutrient cycles was studied in long-term experiments set up in 1983 in Eastern Hungary on chernozem soil. The long-term experiments have shown that nitrogen fert...ilizer rates exceeding the N-optimum of winter wheat resulted in the accumulation of NO3-N in the soil. Winter wheat varieties can be classified into four groups based on their natural nutrient utilization and their fertilizer response. The fertilizer responses of wheat varieties depended on crop year (6.5–8.9 t ha-1 maximum yields in 2011–2015 years) and the genotypes (in 2012 the difference was ~3 t ha-1 among varieties). The optimum N(+PK) doses varied between 30–150 kg ha-1 in different crop years. In maize production fertilization, irrigation and crop rotation have decision role on the yields. The efficiency of fertilization modified by cropyear (in dry 891–1315 kg ha-1, in average 1927–4042 kg ha-1, in rainy cropyear 2051–4473 kg ha-1 yield surpluses of maize, respectively) and crop rotation (in monoculture 1315–4473 kg ha-1, in biculture 924–2727 kg ha-1 and triculture 891–2291 kg ha-1 yield surpluses of maize, respectively). The optimum fertilization could improve the water use efficiency in maize production.

Our long-term experiments gave important ecological and agronomic information to guide regional development of sustainable cropping systems.

Show full abstract
127
128
Nitrogen Supplying Capacity of Brown Forest Soil under Different Cropping Practices and 0.01 M CaCl2 Soluble Organic Nitrogen
Published October 11, 2006
17-23

The best known and most remarkable example of continuous production in Hungary is the Westsik’s crop rotation experiment, which was established in 1929, and is still in use to study the effects of organic manure treatment, to develop models, and predict the likely effects of different cropping systems on soil properties and crop yields. In th...is respect, Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of green, straw and farmyard manure, as well as data sets for scientific research.
Although commonly ignored, the release of nitrogen by root and green manure crops has a significant impact on soil organic matter turnover. The design of sustainable nitrogen management strategies requires a better understanding of the processes influencing nitrogen supplying capacity, as the effects of soil organic matter on soil productivity and crop yield are still very uncertain and require further research. In the treatments of Westsik’s crop rotation experiment, nutrients removed from soil through plant growth and harvesting are replaced either by fertilisers and/or organic manure. Data can be used to study the nitrogen supplying capacity of soil under different cropping systems and its effect on the 0.01 M CaCl2 soluble organic nitrogen content of soil.
The aim of this paper is to present data on the nitrogen supplying capacity of brown forest soil from Westsik’s crop rotation experiment and to study its correlation with hundredth molar calcium-chloride soluble organic nitrogen. The main objective is to determine the effects of root and green manure crops on the nitrogen supplying capacity of soil under different cropping systems. The nitrogen supplying capacity was calculated as a difference of plant uptake, organic manure and fertiliser supply.
The 0.01 M CaCl2 soluble organic nitrogen test has proved reliable for determining the nitrogen supplying capacity of soils. Brown forest soils are low in organic matter and in the F-1 fallow-rye-potato rotation, the nitrogen supplying capacity was 15.6 kg/ha/year. 0.01 M CaCl2 soluble organic nitrogen content was as low as 1.73 mg/kg soil. Roots and green manure increased the nitrogen supplying capacity of soil by more than 100%. This increase is caused by lupine, a legumes crop, which is very well adapted to the acidic soil conditions of the Nyírség region, and cultivated as a green or root manure crop to increase soil fertility.

Show full abstract
36
60
Study of plant production modells with different intensity in winter wheat production
Published December 21, 2008
51-60

The effects of crop rotation, nutrient supply and plant protection technologies were examined on the yield of Mv PÁLMA winter wheat variety and on the most important diseases of ear and leaf. Our experiments were carried out on chernozem soil in the Hajdúság in 2006 and 2007, and three plant protection technologies (extensive, average, inten...sive) and three irrigation variations (without irrigation, irrigated with 50 mm, irrigated with
100 mm) were applied in different crop rotation systems. 
In the triculture crop rotation a higher rate of infection was observed than in the biculture crop rotation, because the vegetative growth was more expressed after pea and these microclimatic factors were favourable for the development of pathogens.
In the triculture crop rotation (pea – wheat – maize) the powdery mildew, DTR and leaf rust of wheat were present in both examined years (powdery mildew 5-15%, DTR 14-42%, leaf rust 8-37% in cropyear 2005/2006, powdery mildew 12-32%, DTR 9-29%, leaf rust 8-26% in cropyear 2006/2007). Fusaria could be observed in 2006 (depending on the plant protection technologies and nutrient supply in the biculture 7-27% and in the
triculture 5-19%). With higher amounts of fertilizers the rate of infection increased and reached its maximum at the highest dose of nutrient supply (N200 +PK).
We observed the highest rate of infection by ear and leaf diseases in the case of the extensive technology, while this rate could be considerably reduced by the application of the intensive technology.
Both in 2006 and 2007, yields were the highest at the N100-200+PK levels in the triculture after pea (6028-7939 kg ha-1 in cropyear 2006, 6578-8690 kg ha-1 in cropyear 2007 depending on plant protection technologies), and at the N150-200+PK levels in the biculture after maize (6096-7653 kg ha-1 in cropyear 2006, 4974-8123 kg ha-1 in cropyear 2007 depending on the plant protection technologies). The highest yield maximums were
reached when pea was the forecrop. The yields on the experimental plots of the intensive plant protection technology was 224-2198 kg ha-1 higher (depending on the forecrop) compared to the plots where the extensive technology was used.
The highest yield without irrigation was at the N150+PK both in biculture and triculture crop rotation. Among the irrigated variations Ö2 and Ö3 at N200+PK fertilisation resulted in the highest yield in the biculture crop rotation, while the N100+PK level in triculture system. In the biculture crop rotation the extra yield was 14-51% higher (575-1225 kg ha-1 depending on plant protection technology) when 50 mm water was irrigated, and
15-54% higher (778-2480 kg ha-1) if 100 mm irrigation was applied comparing to the non-irrigated versions. The yield was  7-17% higher (560-1086 kg ha-1) in the Ö2 irrigation variation, and 8-23% (691-1446 kg ha-1) higher in the Ö3 irrigation variation compared to Ö1 irrigation variation (non-irrigated).
A correlation analysis was made to reveal the connection between the yield, the amount of fertilizers, the rate of infection, the plant protection technologies and the forecrops. Strong positive correlation (0.846) was found between year and fusaria infection. Strong positive correlation was observed between fertilization and powdery mildew infection (0.525), fertilization and DTR (0.528), fertilization and yield quantity (0.683). Lower
correlation was found between fertilization and leaf rust infection (0.409), and forecrop and yield (0.472), recpectively. Negative correlation was calcutated between plant protection technologies and DTR (-0.611), and plant protection technologies and leaf rust (-0.649).

Show full abstract
56
71
The examination of the agronomy, the amount of yield, and the yield stability of winter wheat varieties
Published December 21, 2008
61-72

Our research was carried out at University of Debrecen Centre for Agricultural Sciences Faculty of Agriculture Institution of Plant Sciences Látókép Research Institute through the breeding year of 2003/2004, 2004/2005 and 2005/2006 using cherrnozem soil. In our research we tested 14 chosen autumn wheat varieties during the three crop years.<...br>The different varieties showed very dissimilar ability of resistance against diseases through the three crop years. We could observe both susceptible and resistant varieties. Susceptible varieties got diseases even in favourable crop years. The observed winter wheat varieties showed higher susceptibility against helminthosporium (21.8%) and leaf rost (16.4%). Among the 14 varieties we experienced the least susceptibility in the case of ‘Gaspard’ and ‘GK Kalász’. The research showed that the disease of fusarium undoubtedly depends on the features of the crop year.
In terms of stem solidity we experienced big differences. Among all the observed winter wheat varieties the mid-late ripening ‘Gaspard’ showed the best results in the average of the three years, only 5.3% was beaten down.
The three ripening group of the winter wheat showed the following average yield in the average of three years: 7065 kg/hectare (early ripening varieties), 7261 kg/hectare (late ripening varieties), 6793 kg/hectare (mid-late ripening varieties). Among all the observed varieties the early ripening ‘Flori 2’ produced the biggest yield (7692 kg/hectare).
During the three crop years we reached very different amounts of yield which means that weather conditions had a telling affect on yield. In 2004 we reached an excellent average yield in all the tree  breeding groups because of the favourable weather conditions. In 2005 we had a moderate amount of yield because of the unfavourable weather conditions of winter. The year of 2006 showed the smallest amount of yield which is due to the fact that the plant grew less thick than usually.
There were significant differences among the observed varieties in the term of yield, which can be attributed to dissimilar biological basics.
One of he most important questions is the yield stability of the varieties. We had extremely different results at this field. Speaking in general terms we can state that both weather conditions and genetical abilities have a determining effect on yield. In the case of winter wheat varieties the rate of yield fluctuation was quite big, moving in the interval of 33.7-70.3%. Among all the observed varieties ‘Gaspard’ showed the best yield stability (33.3%). 

Show full abstract
37
79
Correlation between the weather in 2017 and the productivity of maize
Published June 30, 2018
89-93
In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of... maize. The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2; therefore, this experiment was half-industrial. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. The yield increasing effect of the fertilizer also depended on the number of plants per hectare to a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants ha-1.
In Hajdúszoboszló in 2017, up to October, 445.8 mm of rain fell, which is in line with the average values of 30 years, and is only 45.7 mm less than those. In 2017, the effect of increasing the plant number was slighter. Averaged over the observed fertilizer treatments and hybrids, the yield was 9.10 t ha-1 with 60 thousand plants ha-1, 9.11 t ha-1 with 70 thousand plants ha-1 and 9.12 t ha-1 with 80 thousand plants ha-1. Without fertilization, in most cases, increasing the plant number from 60 thousand plants ha-1 to 70-80 thousand plants ha-1 does not increased the yield but decreased it. With N80+PK treatment the yield changed between 8.90 and 11.27 t ha-1. The effect of increasing the plant number was just slightly observable and did not show a clear tendency. The effect of changing the plant number, even with the highest dosage of fertilizers, could not be detected adequately. In contrast with the plant number, the effect of the different fertilizer treatments was expressly traceable. Compared to the control treatment (treatment without fertilization), with N80+PK fertilizer dosage with 60 thousand plants ha-1 the yield increased by 3.36–4.99 t ha-1. The smallest demonstrable proof, i.e. the LSD5% was 0.22 t ha-1, which means that fertilization, in each case, significantly increased the yield. When analysing the effect of fertilization in the average of the hybrids and the different plant numbers, a yield of 5.61 t ha-1 could be detected, which value was 10.12 t ha-1 with N80+PK treatment and 11.61 t ha-1 with N160+PK treatment. Thus, it can be calculated that compared to the treatment without fertilization, the N80+PK treatment increased the yield by 4.51 t ha-1, while compared to the N80+PK treatment, the N160+PK treatment increased the yield by 1.49 t ha-1. In addition to agrotechnical factors, in maize production, the impact of the crop year is specifically of high importance.
The average yield of hybrids (in the average of the different fertilizer treatments) was 6.81 t ha-1 in 2015, 11.86 t ha-1 in 2016 and 9.11 t ha-1 in 2017. When comparing the yield results against the precipitation data, it is clearly visible that the amount of rain fell in the January– October period is directly proportional to the average yield of maize. The effect of the crop year can be defined in a 5.05 t ha-1 difference in the yield.
Show full abstract
97
112
Effect of two different cropyear and the agrotechnological factors on the agronomic characteristic of the winter weat in a lon-term experiment
Published December 16, 2012
143-149

We studied the effects of crop rotation, fertilization and crop protection technologies on occurence of the major ear- and leaf-diseases (powdery mildew, helminthosporiosis, leaf rust, Fusarium wilt) and the degree of lodging in the winter wheat variety Mv Pálma in two very different years (2006/2007=dry; 2009/2010=rainy). The experiments were... carried out at the Látókép Experimental Farm of the University of Debrecen CAAES in triculture (pea-wheat-maize) and biculture (wheat-maize) at five fertilization levels by applying three different crop protection technologies (extensive, average, intensive).
In the cropyear of 2006/2007, the disease severity of leaf diseases was higher than the average in both crop rotations in spite of the fact that the weather during the whole vegetation period was dry. Infection by powdery mildew, helminthosporiosis and leaf rust increased with increasing fertilization, the highest infection was measured at the highest fertilization level (N200+PK) in the extensive crop protection technology. According to the results, no infection of ears by Fusarium and no lodging occurred in either bi- or triculture due to the dry year. The extremely rainy weather in 2009/2010 was favourable not only for the vegetative development of the stand, but also increased the occurance of leaf-, stalk- and ear-diseases and a high degree of lodging was observed. The highest infection by powdery mildew was observed in the plots with the highest fertilizer dosage under an extensive crop protection technology. A much higher helminthosporiosis infection was measured than in the cropyear of 2006/2007. The wet weather and higher than average temperature promoted the occurence and spreading of leaf rust. Under an extensive crop protection technology, a leaf rust infection of 24% and 31% was detected after maize and pea as a forecrop, respectively, in the N200+PK treatment. As opposed to 2006/2007, the disease severity of Fusarium was 3–8% and 2–7% in the control after maize and pea as a forecrop, respectively. This value, similarly to that of other pathogens, increased with increasing fertilization levels. Due to the large vegetative mass, a significant lodging was observed in the wheat stands in both bi- and triculture (17–100%, 12–100%). 

Show full abstract
54
112
Effect of Irrigation on the Yield and Quantity of Potato Varieties
Published December 6, 2005
53-61

In Hungary, the growing area of potato area dropped dramatically in the last few decades. Additionally not only are we lagging behind Western European countries as regards yields, but the competitiveness of production is further decreased by the great alternation in yields from year to year, unpredictable market conditions, poor consumption hab...its and, often the lack of quality products.
The experiment was carried out at the experimental site of the University of Debrecen, Farm and Regional Research Institute, at Látókép. In our experiment, we examined the yield and some quality parameters of 9 medium-early varieties in large parcels. Of the examined varieties, 3 are of Dutch, and 6 are of Hungarian breeding.
The experiment was set up in 2003 and 2004, in two years of significantly different precipitation, on 50 m2 parcels on calcareous chernozem soil after winter wheat as a forecrop in both years. The 9 varieties were examined in 4 repetitions in randomized blocks, from which two repetitions were irrigated, and two were non-irrigated.
We examined the yields of the varieties, the distribution of tubers according to size and their percentages, and the changes in specific parameters of quality and inner content due to irrigation. We studied the dry matter content, the starch content, the underwater mass, the amount of reducing sugars, and the colour index of frying of the tubers.
In Summary, it can be stated that among the agrotechniques, year effect, variety and irrigation factors have considerable impact on potato yield quality and quantity. However the effect of irrigation depends on the crop year. In a draughty year, like in 2003, irrigation could increase the yield by 10%, while in a more favourable wet year, the improving effect of irrigation was low.

Show full abstract
45
78
The Effect of Year and Irrigation on the Yield Quantity and Quality of the Potato
Published October 11, 2006
12-16

In Hungary, the growing area of potato area reduced dramatically in the last few decades, additionally we are lagging behind the Western European countries as regards yields and the competitiveness of production is further decreased by the great alternation in yields from year to year, the unpredictable market conditions, bad consumption habits... and many times unfortunately the lack of quality products.
The ecological and climatic conditions of Hungary are not everywhere suitable for potato, in the area of Debrecen the amount of rainfall was lower, and the monthly average temperature was higher than the requirement of potato in its growing season in 2002 and 2003.
The experiment was carried out at the experimental site of the University of Debrecen, Farm and Regional Research Institute, at Látókép. In our experiment we examined the yield and some quality parameters of 8 and 9 medium-early varieties in large parcels in 2002 and 2003 respectively. Out of the examined varieties 3 are of Dutch, and 6 are of Hungarian breeding.
The experiment was set up on 49.5 m2 parcels on calcareous chernozem soil after winter wheat as a forecrop in both years. The 9 varieties were examined in 4 repetitions in randomized blocks, out of which two repetitions were irrigated, and two were non-irrigated.
We examined the yields of the varieties, the distribution of tubers according to size and their percentages, and the changes in specific parameters of quality and inner content due to irrigation. We studied the dry matter content, the starch content, the under-water mass, the amount of reducing sugars, the colour index of frying and the element contents of tubers.
Summing up, it can be stated that among the agrotechnical year effect, variety and irrigation factors have considerable impact on potato yield quality and quantity. On the basis of our results, it can be stated that in potato production variety should be chosen in accordance with the aim of production and technology should be adapted to that specific variety.

Show full abstract
36
69
The effect of sowing time on the yield and the variance of the seed moisture content a harvest of maize (Zea mays L.) hybrids
Published May 23, 2006
39-49

Sowing time is an important crop technology element of maize. We studied the effect of this factor on the growth and production of maize in an experiment carried out near Hajdúböszörmény, in 2003 and 2004, and near Debrecen, in 2005.
The soils of the experiments were humic gley soil and chernozem. Weather in both years differed greatly. ...2003 was drought. Neither the distribution, nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
In 2004 and in 2005, there were favorable and rainy seasons. The distribution and quantity of precipitation were suitable between April and September. The average temperature was also suitable for maize.
In 2003, we tested seven hybrids at four sowing times. Hybrids with a shorter vegetation period gave the highest yield at the later sowing time, while the hybrids with a longer vegetation period gave them at the earlier sowing time. The yield of PR34B97, PR36N70, PR36M53 hybrids were the best at every sowing times. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
In 2004, we examined the yield and seed moisture contents of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing times. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year, due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time, than at the later.
In 2005, we applied three sowing times. Unfortunately, the results of the third sowing time could not be analyzed, due to the low plant density. The yield of the six hybrids varied from 12 to 14 t/ha at the first sowing time. At the second sowing time, the yields fluctuated and each hybrid had the lowest yield, except the PR37D25 hybrid. At the latest sowing time, the yield of the PR34B97 hybrid was the lowest. However, this low yield was due to damage from the Western corn rootworm (Diabrotica virgifera) imago. The moisture content at harvest of the hybrids varied from 16 to 24% at the first sowing time. Yields at the second sowing time were higher. The low yield of the PR34B97 hybrid coupled with a higher seed moisture content. In addition, the maximum value of the LAI was more favourable at the first sowing time, and ranged between 5-5.5 m2/m2.
The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.

Show full abstract
44
60
Comparative analysis on the fertiliser responses of Martonvásár maize hybrids in long-term experiments
Published December 21, 2008
111-117

The results of experiments carried out in the Agricultural Research Institute of the Hungarian Academy of Sciences clearly show that in the case of hybrids grown in a monoculture greater fertiliser responses can be achieved with increasing rates of N fertiliser than in crop rotations. In the monoculture experiment the parameters investigated re...ached their maximum values at a rate of 240 kg/ha N fertiliser, with the exception of 1000-kernel mass and starch content. In both cases the starch content was highest in the untreated control, gradually declining as the N rates increased. Among the parameters recorded in the crop rotation, the values of the dry grain yield, the 1000-kernel mass, the protein yield and the starch yield were greatest at the 160 kg/ha N fertiliser rate, exhibiting a decrease at 240 kg/ha. Maximum values for the protein content and SPAD index were recorded at the highest N rate. It is important to note, however, that although the N treatments caused significant differences compared to the untreated control, the differences between the N treatments were not significant.
In the given experimental year the values achieved for the untreated control in the crop rotation could only be achieved in the monoculture experiment at a fertiliser rate of 160 kg/ha N, indicating that N fertiliser rates could be reduced using a satisfactory crop sequence, which could be beneficial from the point of view of environmental pollution, crop protection and cost reduction.
The weather in 2006 was favourable for maize production, allowing comparative analysis to be made of the genetically determined traits of the hybrids. Among the three hybrids grown in the monoculture experiment, Maraton produced the best yield, giving maximum values of the parameters tested at a fertiliser rate of 240 kg/ha N. The poorest results were recorded for Mv 277, which could be attributed to the fact that the hybrid belongs to the FAO 200 maturity group, while the other hybrids had higher FAO numbers. Maraton also gave the highest yields in the crop rotation experiment at the 160 kg/ha N level. All three hybrids were found to make excellent use of the natural nutrient content of the soil.
It was proved that the protein content of maize hybrids can only be slightly improved by N fertilisation, as this trait is genetically coded, while the starch content depends to the greatest extent on the ecological factors experienced during the growing season.

Show full abstract
35
81
Determining elements of variety-specific maize production technology
Published October 5, 2010
157-161

Our aim was to work out such new maize fertilizer methods and models which can reduce the harmful effects of fertilization, can
maintain the soil fertility and can moderate the yield fluctuation (nowadays 50-60 %).
The soil of our experimental projects was meadow soil. The soil could be characterized by high clay content and pour phosphor...us and
medium potassium contents. In the last decade, out of ten years six years were dry and hot in our region. So the importance of crop-rotation
is increasing and we have to strive for using the appropriate crop rotation.
The yields of maize in monoculture crop rotation decreased by 1-3 t ha-1 in each dry year during the experiment (1983, 1990, 1992,
1993, 1994, 1995, 1998, 2000, 2003, and 2007). The most favourable forecrop of maize was wheat, medium was the biculture crop rotation
and the worst crop rotation was the monoculture.
There is a strong correlation between the sowing time and the yield of maize hybrids, but this interactive effect can be modified by the
amount and distribution of precipitation in the vegetation period. At the early sowing time, the grain moistures were 5-12 % lower compared
to the late sowing time and 4-5 % lower compared to the optimum sowing treatment.
There are great differences among the plant density of different maize hybrids. There are hybrids sensitive to higher plant density and
there are hybrids with wide and narrow optimum plant densities.
The agro-ecological optimum fertilizer dosage of hybrids with a longer season (FAO 400-500) was N 30-40 kg ha-1 higher in favourable
years as compared to early hybrids.
We can summarize our results by saying that we have to use hybrid-specific technologies in maize production. In the future, we have to
increase the level of inputs and have to apply the best appropriate hybrids and with respect to the agroecologial conditions, we can better
utilize the genetic yield potential.

Show full abstract
26
53
The scientific background of competitive maize production
Published September 5, 2018
33-46

The effect and interaction of crop production factors on maize yield has been examined for nearly 40 years at the Látókép Experiment Site of the University of Debrecen in a long-term field experiment that is unique and acknowledged in Europe. The research aim is to evaluate the effect of fertilisation, tillage, genotype, sowing, plant densit...y, crop protection and irrigation. The analysis of the database of the examined period makes it possible to evaluate maize yield, as well as the effect of crop production factors and crop year, as well as the interaction between these factors.

Based on the different tillage methods, it can be concluded that autumn ploughing provides the highest yield, but its effect significantly differed in irrigated and non-irrigated treatments. The periodical application of strip tillage is justified in areas with favourable soil conditions and free from compated layers (e.g. strip – strip – ploughing – loosening). Under conditions prone to drought, but especially in several consecutive years, a plant density of 70–80 thousand crops per hectare should be used in the case of favourable precipitation supply, but 60 thousand crops per hectare should not be exceeded in dry crop years. The yield increasing effect of fertilisation is significant both under non-irrigated and irrigated conditions, but it is much more moderate in the non-irrigated treatment.

Selecting the optimum sowing date is of key importance from the aspect of maize yield, especially in dry crop years. Irrigation is not enough in itself without intensive nutrient management, since it may lead to yield decrease.

The results of research, development and innovation, which are based on the performed long-term field experiment, contribute to the production technological methods which provide an opportunity to use sowing seeds, fertilisers and pesticides in a regionally tailored and differentiated way, adapted to the specific needs of the given plot, as well as to plan each operation and to implement precision maize production.

Show full abstract
155
134
The effects of drought stress on soybean (Glycine max (L.) Merr.) growth, physiology and quality – Review
Published May 16, 2017
19-24

Abiotic stresses are one of the most limiting factors inhibit plant's growth, leading to a serious production loss. Drought stress is one of the most destructive abiotic stresses and is still increasing year after year resulting in serious yield losses in many regions of the world,
consequently, affecting world’s food security for the incr...easing world population. Soybean is an important grain legume. It is one of the five major crops in the world, an essential source of oil, protein, macronutrients and minerals, and it is known as the main source of plant oil and protein. Harvested area of soybean is increasing globally year after year. However, soybean is the highest drought stress sensitive crop, the water deficit influences the physiology, production and seed composition of this crop. We introduce a review for literatures concerning the changes of the above traits of soybean exposed to drought stress, with past explanations for these changes.

Show full abstract
108
121
The effect of sowing date and plant density of winter oilseed rape (Brassica napus var. napus f. biennis L.) population
Published June 30, 2018
213-215

The experiment has been set up in the University of Debrecen Látókép Experimental Station in three different years (2014, 2015 and 2016), three different plant densities 200, 350 and 500 thousand ha-1, four replications of the same nutrient supply with using a line spacing of 45 cm. In the experiment, the fore crop was winter wheat in each y...ear. The amount of weeds was observed five times in the last experimental year (2016/2017). In the three experimental years, the highest yield was harvested from the early sowing plot with the highest plant density. On the basis of the Pearson’s correlation analysis there was significant negative correlation (r=-0.583) between the effect of the annual year and yield of the hybrid.

Show full abstract
103
119
The effect of production area on the development of yield producing factors of maize (Zea mays L.) hybrids of different genotypes
Published February 18, 2016
67-72

Maize yield amount development is determined by the given crop year and the genotype of the applied hybrid, but beside these also by the applied agrotechnical factors, in particular by sowing technology. The development of yield amount and yield producing factors of five maize hybrids of different genotypes has been studied in a small-plot fiel...d experiment by the application of different row spacings and plant density variants. The production of the individual plants shows decreasing tendency parallel to the increasing plant density, however, this decrement is compensated by the higher number of plants per unit production area. Individual plant production is determined by the development of yield producing factors, such as the length and the diameter of cobs, just as by the thousand seed weight – that were studied in the present research work as well.

In the present research work the decreasing row spacing resulted in a yield increment of 0.67 t ha-1 (4.53%) in 2013, while in contrast in 2014 yield was decreased by 1.75 t ha-1 (14.87%). The high amount of precipitation in March was determinant in 2013: it filled up the soil water stock and balanced the negative effect of the inadequate amount and distribution of precipitation during the vegetation period for the yield. Lower extent of yield increment (0.6 t ha-1) was registered in 2014 in case of the row spacing of 76 cm than in the previous year. In case of a row spacing of 45 cm the difference between the two crop years was 3.1 t ha-1. The highest impact on the yield production factors was found in all treatment combinations in case of the applied hybrid among the three studied treatment factors. In the crop year of 2014 the effect of plant density on cob diameter and thousand seed weight could be revealed as well. In case of the cob diameter significant difference was found between the plant densities of 70 000 and 90 000 plants ha-1, just as between the populations with densities of 50 000 and 90 000 plants ha-1. In case of the thousand seed weight significant differences could be found by the application of plant densities of 70 000 and 90 000 plants ha-1. The highest values of the studied yield producing factors were measured in case of the plant densities of 50 000 and 70 000 plants ha-1; increasing the plant density to 90 000 plants ha-1 resulted in rather decreasing values.

Show full abstract
83
114
1 - 25 of 78 items
1 2 3 4 > >>