Search
Search Results
-
The effect of NPK fertilization and the number of plants on the yield of maize hybrids with different genetic base in half-industrial experiment
103-108Views:211In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize.
The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2, this it was a halfindustrial experiment. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. Yield increasing effect of the fertilizer also depended on the number of plants per hectare at a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants/ha.
In Hajdúszoboszló, in 2015 the amount of rainfall from January to October was 340.3 mm, which was less than the average of 30 years by 105.5 mm. This year was not only draughty but it was also extremely hot, as the average temperature was higher by 1.7 °C than the average of 30 years. In the critical months of the growing season the distribution of precipitation was unfavourable for maize: in June the amount of rainfall was less by 31mm and in July by 42 mm than the average of many years.
Unfavourable effects of the weather of year 2015 were reflected also by our experimental data. The yield of hybrids without fertilization changed between 5.28–7.13 t ha-1 depending on the number of plants.
It can be associated also with the unfavourable crop year that the yield of the six tested hybrids is 6.33 t ha-1 in the average of the stand density of 60, 70 and 80 thousand plants per hectare without fertilization, while it is 7.14 t ha-1 with N80+PK fertilizer treatment. That increase in the yield is only 0.81 t ha-1, but it is significant. Due to the especially draughty weather the yield increasing effect of fertilizers was moderate. In the average of the hybrids and the number of plants, increasing the N80+PK treatment to N160+PK, the yield did not increase but decreased, which is explicable by the water scarcity in the period of flowering, fertilization and grain filling.
The agroecological optimum of fertilization was N 80, P2O5 60 and K2O 70 kg ha-1. Due to the intense water scarcity, increased fertilization caused decrease in the yield. As for the number of plants, 70 000 plants ha-1 proved to be the optimum, and the further increase of the number of plants caused decrease in the yield.
-
Correlation between the weather in 2017 and the productivity of maize
89-93Views:181In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize. The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2; therefore, this experiment was half-industrial. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. The yield increasing effect of the fertilizer also depended on the number of plants per hectare to a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants ha-1.In Hajdúszoboszló in 2017, up to October, 445.8 mm of rain fell, which is in line with the average values of 30 years, and is only 45.7 mm less than those. In 2017, the effect of increasing the plant number was slighter. Averaged over the observed fertilizer treatments and hybrids, the yield was 9.10 t ha-1 with 60 thousand plants ha-1, 9.11 t ha-1 with 70 thousand plants ha-1 and 9.12 t ha-1 with 80 thousand plants ha-1. Without fertilization, in most cases, increasing the plant number from 60 thousand plants ha-1 to 70-80 thousand plants ha-1 does not increased the yield but decreased it. With N80+PK treatment the yield changed between 8.90 and 11.27 t ha-1. The effect of increasing the plant number was just slightly observable and did not show a clear tendency. The effect of changing the plant number, even with the highest dosage of fertilizers, could not be detected adequately. In contrast with the plant number, the effect of the different fertilizer treatments was expressly traceable. Compared to the control treatment (treatment without fertilization), with N80+PK fertilizer dosage with 60 thousand plants ha-1 the yield increased by 3.36–4.99 t ha-1. The smallest demonstrable proof, i.e. the LSD5% was 0.22 t ha-1, which means that fertilization, in each case, significantly increased the yield. When analysing the effect of fertilization in the average of the hybrids and the different plant numbers, a yield of 5.61 t ha-1 could be detected, which value was 10.12 t ha-1 with N80+PK treatment and 11.61 t ha-1 with N160+PK treatment. Thus, it can be calculated that compared to the treatment without fertilization, the N80+PK treatment increased the yield by 4.51 t ha-1, while compared to the N80+PK treatment, the N160+PK treatment increased the yield by 1.49 t ha-1. In addition to agrotechnical factors, in maize production, the impact of the crop year is specifically of high importance.The average yield of hybrids (in the average of the different fertilizer treatments) was 6.81 t ha-1 in 2015, 11.86 t ha-1 in 2016 and 9.11 t ha-1 in 2017. When comparing the yield results against the precipitation data, it is clearly visible that the amount of rain fell in the January– October period is directly proportional to the average yield of maize. The effect of the crop year can be defined in a 5.05 t ha-1 difference in the yield. -
The effect of and interaction between the biological bases and the agrotechnical factors on maize yield
83-87Views:167The effect of and interaction between the biological bases and the agrotechnical factors on maize yield In our research, we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize. The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2; therefore, this experiment was half-industrial. We tested six hybrids with different genetic characteristics and growing seasons.We analysed the correlation between the nutrient supply and the yield of maize hybrids with a control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. The yield increasing effect of the fertilizer also depended on the number of plants per hectare to a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants ha-1.In 2015, the highest yield was produced by hybrid P9241 with N80+PK and 70 thousand plants per hectare. With the N160+PK fertilizer dosage, the same hybrid responded the best, followed by hybrids P9486 and DKC4717. Using the same fertilizer treatment, the 80 thousand plants per hectare population density resulted in decrease in the yield with most of the examined hybrids. In 2016, with the increase in the number of plants per hectare, even with non-fertilised treatment (control treatment), the yield could be increased in the case of each hybrid.Averaged over the different hybrids and fertilizer treatments, applying 80 thousand plants ha-1 instead of 60 thousand resulted in 1.0 ha-1 yield increase. In 2017, the number of plants had a slighter effect. With N160+PK treatment, in most cases no significant difference can be observed. The value of LSD5%: plant number: 0.20 t ha-1, hybrid: 0.28 t ha-1, interaction: 0.48 t ha-1. With N160+PK treatment, the hybrids produced yields between 10.07 and 12.45 t ha-1. When examining the three years in the average of the number of plants, with treatment without fertilisation, the average yield of hybrids reached 7.53 t ha-1. With N80+PK treatment, this value was 9.71 t ha-1 and with doubling the fertilizer dosage, this value increased to 10.42 t ha-1. No economic profit was gained as a result of applying double dosage of fertilizer; therefore, the N80+PK dosage can be considered ideal. -
Studies of plant density increase – on maize hybrids of various genotypes on chernozem soil
87-92Views:171The yield and crop safety of maize are influenced by numerous ecological, biological and agrotechnical factors. It is of special importance to study one of the agrotechnical elements, the plant density of maize hybrids, which is influenced by the growing area conditions and the selected hybrid.
We have investigated the effects of three different plant numbers (50 thousand plants ha-1, 70 thousand plants ha-1 and 90 thousand plants ha-1) on the yield of 12 maize hybrids of different genotypes in Hajdúság, on calcareous chernozem soil, in the Látókép Research Farm of the University of Debrecen, Centre for Agricultural Sciences, in 2013. The experiment was set in four replications, besides commonly applied agrotechnical actions. In the experiment, 1 hybrid of very early (Sarolta), 9 of early (P 9578, DKC 4014, DKC 4025, P 9175, NK Lucius, Reseda, P 37N01, DKC 4490, P 9494) and 2 of medium (Kenéz, SY Afinity) maturation were used.
With the increase of the plant number, the number of individuals per unit area increases. According to our experimental results, we have concluded that with the increase of the plant number, the yield increased in the average of the hybrids. In the average of the hybrids, in the case of 50 thousand plants ha-1, the yield was 13 130 kg ha-1, in the case of 70 thousand plants ha-1, it was 13 824 kg ha-1, while in the case of 90 thousand plants ha-1, the yield became 13 877 kg ha-1.
In addition to plant density increase, it is necessary to determine the optimal plant number that is the most favourable for the certain hybrid under the given conditions. To fulfil this aim, we have determined the optimal plant number corresponding to the maximum yield of the given hybrid, within the given plant number range. The optimal and applied plant numbers differ, since the optimal one could only be applied under ideal conditions. Since the agrotechnical actions cannot always be carried out in appropriate quality and one has to adapt to the weather conditions, thus we have determined a plant number range in the case of each hybrid. The hybrids were classified into categories of producible in narrow and broad plant number range.
-
Technological development of sustainable maize production
83-88Views:158In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize.
The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly eight ha field. The size of one plot was 206 m2, this it was a half-industrial experiment. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. Yield increasing effect of the fertilizer also depended on the number of plants per hectare at a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants per ha.
In Hajdúszoboszló, in 2016 the amount of rainfall from January to October was 605 mm, which was more than the average of 30 years by 160 mm. The yield of hybrids without fertilization changed between 9.63–11.6 t ha-1 depending on the number of plants.
The six tested hybrids is 10.65 t ha-1 in the average of the stand density of 60, 70 and 80 thousand plants per hectare without fertilization, while it is 12.24 t ha-1 with N80+PK fertilizer treatment. That increase in the yield is 1.6 t ha-1, it is significant.
Da Sonka hybrid is sensitive to weather, it is able to produce 6 t ha-1 additional yield in case of favourable condition. However, it has a low stress tolerance. The most stable yields were observed at Kamaria and Pioneer hybrids. The effect of vintage is also an important factor on the yield. In average, the yield of maize was 6.81 t ha-1 in 2015, which was a drought year and 11.86 t ha-1 in 2016 that was a favourable year. -
The effect of plant density on maize yield in average and extremely dry years
7-16Views:114The yield safety of maize has not been satisfactory in Hungary for decades. Yield is influenced by the combination of several factors.
In recent years, the frequency of dry years increased and fertilization decreased. These factors call for a rational determination of the plant density.
I studied the relationship between plant density and yield in 2003-2004 and 2007 on meadow soil.
In 2003, the weather was dry. In the vegetation period, the amount of precipitation was 78.5 mm lower and the temperature was 0.97 °C higher than the average of 30 years, the number of hot days was 47-60 (days with a temperature higher than 30 °C). However, we obtained favourable results under experimental conditions in 2003 after wheat as a forecrop using the fertilizer Kemira Power.
The weather in 2004 was favourable. In the vegetation period, the amount of precipitation was 93.2 mm higher than the average of 30 years. Although, the distribution of the precipitation could have been more favourable. The yield of the hybrids ranged between 8.87-10.42 t/ha. Among the studied seven hybrids, the early hybrids gave the highest yield at the highest plant density of 90 thousand plants/ha (PR38Y09, PR38A67, PR37D25, PR37M34). However, FAO 400-500 hybrids gave favourable results also at the low plant density of 45 thousand plants/ha (8-9 t/ha). At this plant density, the aeration of the plant stock was better and the hybrids were prone to bringing several cobs. Yield stagnated with increasing plant density (60 thousand plants/ha), then at 75-90 thousand plants per ha, the yield started to increase again.
In 2004 the yield of hybrids was considerably higher than in the previous year. In contrast to yields of 8.87-10.42 t/ha in 2003, yields in 2004 were around 9-12 t/ha.
The yield of the hybrid XO 902 P is above 12 t/ha already at a plant density of 45 thousand plants/ha. It gives maximum yield at the plant density of 90 thousand plants/ha.
The hybrid PR38P92 showed a good response to changing plant density, but its yield was only 9 t/ha at the low plant density value.
In a favourable year, the yield of the hybrids PR38B85, PR37W05, PR37D25, PR37K85 at a plant density of 45 thousand plants/ha 11 t/ha, while at the higher plant density of 90 thousand plants/ha, it ranges around 13-15 t/ha.Hybrids PR36K20, PR35Y54, PR34H31 have a good individual yield and they are prone to bringing several cobs in favourable years at a low plant density. Their maximum yield at the plant density of 90 thousand plants/ha is almost 16 t/ha.
In 2007, the weather was similar to that of the extremely dry year of 2003. The amount of precipitation in the vegetation period was 41.9 mm lower than the average of 30 years and its distribution was not favourable either.
In the optimum NPK fertilizer treatment at an optimum plant density, the yield of hybrids ranged between 9.32-10.73 t/ha. The highest yields of 10.22-10.73 t/ha were measured for hybrids PR38A79 (FAO 300) and PR35F73 at a relatively low plant density of 60 thousand plants/ha.
In the average of the hybrids, the optimum NPK dosage was N 131, P2O5 82, K2O 93 kg/ha active ingredient. -
Effects of the cropyear and the agronomical factors on agronomical elements of different sweet corn (Zea Mays L. convar. saccharata Koern.) genotypes in long-term experiment
105-110Views:116In the crop season of 2010 (rainy year), we studied the effect of three agrotechnical factors (sowing time, fertilization, plant density) and four different genotypes on the agronomical characteristics of sweet corn on chernozem soil in the Hajdúság. The experiments were carried out at the Látókép Experimental Farm of the University of Debrecen. In the experiment, two sowing dates (27 April, 26 May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and four genotypes (Jumbo, Enterprise, Prelude, Box-R) were used at two plant densities (45 thousand plants ha-1, 65 thousand plants ha-1). The amount of precipitation in the season of 2010 was 184 mm higher, while the average temperature was 0.8 oC higher in the studied months than the average of 30 years. Weather was more favourable for sweet maize at the first sowing date, if we consider the yields, however, if we evaluate the agronomical data and yield elements (number of cobs, cob length and diameter, the number of kernel rows, the number of kernels per row) it can be stated that the size of the fertile cobs was greater at the second sowing date due to the lower number of cobs. The largest number of fertile cobs was harvested in the case of the hybrid Enterprise (72367.9 ha-1) in the higher plant density treatment (65 thousand ha-1) at the fertilization level of N120+PK when the first sowing date was applied. The largest cobs were harvested from the hybrid Box-R (cob weight with husks: 516.7 g, number of kernels in one row: 45.7) at the lower plant density (45 thousand plants ha-1) in the second sowing date treatment. Cob diameter and the number of kernel rows were the highest for the hybrid Prelude.
-
Practical experiences of a designing and operating a pilot aquaponic system
27-32Views:335Aquaponics is the combination of fish farming (aquaculture) and the soilless cultivation of plants (hydroponics). The aquaponics system is an artificial, recirculating ecosystem, in which bacterial processes convert the waste materials in the water used for fish rearing into plant nutrients, and therefore with the generated heat it is suitable for culturing economically valuable plants, and thus it mitigates the nutrient laden and quantity of the intensive fish producing systems’ effluent water.
The primary goal of our 12 separate unit’s aquaponics system was to gain experience. We would like to find the right plant species, which are fit for that medium, and their crop can be sold. Besides the plants, our attention focused on the fish. Two fish species were included in the experiments, the common carp and barramundi. It was difficult to create them a perfect living space, besides a constantly changing conditions temperature. Apart the above mentioned we had a problem with the number of individuals per tank, the deformity of the fish body and the too high volume of pH (we registered continuous values above 8.4). We get by carps 4.7 grams of weight gain during 15 weeks, because of the bad conditions.
The main problems at the plants are caused by aphesis and protection against sunburn. Even so we have got the multiples of field yields for each plant species. At salad has grown twice of field yields, tomatoes one and half, kohlrabi than 3.5 times more. The causes of multiple yields are the continuous balanced water and the nutrient uptake of plants. Each plant species fit for cultivating in aquaponics and their crops are delicious, chemical -free, safe and marketable. The plants should be more concentrated. After the experiment, it has been determinated that the carp is suitable for aquaponics, but greater weight gain could be achieved with optimal selection of size of rearing units.
-
The effect of production area on the development of yield producing factors of maize (Zea mays L.) hybrids of different genotypes
67-72Views:147Maize yield amount development is determined by the given crop year and the genotype of the applied hybrid, but beside these also by the applied agrotechnical factors, in particular by sowing technology. The development of yield amount and yield producing factors of five maize hybrids of different genotypes has been studied in a small-plot field experiment by the application of different row spacings and plant density variants. The production of the individual plants shows decreasing tendency parallel to the increasing plant density, however, this decrement is compensated by the higher number of plants per unit production area. Individual plant production is determined by the development of yield producing factors, such as the length and the diameter of cobs, just as by the thousand seed weight – that were studied in the present research work as well.
In the present research work the decreasing row spacing resulted in a yield increment of 0.67 t ha-1 (4.53%) in 2013, while in contrast in 2014 yield was decreased by 1.75 t ha-1 (14.87%). The high amount of precipitation in March was determinant in 2013: it filled up the soil water stock and balanced the negative effect of the inadequate amount and distribution of precipitation during the vegetation period for the yield. Lower extent of yield increment (0.6 t ha-1) was registered in 2014 in case of the row spacing of 76 cm than in the previous year. In case of a row spacing of 45 cm the difference between the two crop years was 3.1 t ha-1. The highest impact on the yield production factors was found in all treatment combinations in case of the applied hybrid among the three studied treatment factors. In the crop year of 2014 the effect of plant density on cob diameter and thousand seed weight could be revealed as well. In case of the cob diameter significant difference was found between the plant densities of 70 000 and 90 000 plants ha-1, just as between the populations with densities of 50 000 and 90 000 plants ha-1. In case of the thousand seed weight significant differences could be found by the application of plant densities of 70 000 and 90 000 plants ha-1. The highest values of the studied yield producing factors were measured in case of the plant densities of 50 000 and 70 000 plants ha-1; increasing the plant density to 90 000 plants ha-1 resulted in rather decreasing values.
-
Effect of season and sowing time on the moisture loss dynamics and yield of maize
255-265Views:213The effect of sowing date on maize development and yield was studied in field experiments. The experiment was set up at the experimental garden of the University of Debrecen Centre of Agricultural Sciences Faculty of Agriculture, Department of Plant Sciences in 2005 and 2006 on calcareous chernozem soil. Six hybrids with different genetic characteristics and vegetation period were tested (Sze 269, DK 440, PR37D25, NK Cisko, Mv Maraton, PR34B97) at three different sowing dates.
2005 was a very wet year. The amount of precipitation in the vegetation period was about 150 mm higher than the average of 30 years. No significant differences were observed in temperature. However, the number of sunny hours was much lower during the summer than as usual. This had an influence on yields.
In 2006, there was no risk of inland water in spite of the large amount of precipitation at the beginning of the year. The amount of water available for plants was satisfactory during the season due to the favorable amount of precipitation. Therefore, plants suffered less from the heat in July. However, hail on 22 July caused significant damage. The number of sunny hours in the summer was high enough. The warm, dry autumn helped the water release of plants.
In 2005, the results of the third sowing date could not be evaluated due to the large number of missing plants. The yield of hybrids ranged between 12-14 t/ha for the first sowing date. For the second sowing date, yields ranged between wider boundaries. The hybrid PR37D25 has a very high yield in the case of the second sowing date, and its seed moisture content was favorably low. The yield of hybrid PR34B97 was the lowest at the later sowing date, the prime reason of this was damage caused by Diabrotica virgifera. The seed moisture content at harvest varied between 16-24% for the first sowing date. In the case of the second sowing date, higher values were measured. Hybrids Sze 269 and NK Cisko had favorable water release characteristics. The maximum value of leaf area index was the best in the case of the first sowing date (5-5.5 m2/m2).
In 2006, yields for the first sowing date ranged between 8-10 t/ha. At the second sowing date, more favorable results were obtained. The reason for this is probably that hail caused a higher damage in hybrids with the early sowing date. Plant stock with later sowing date could recover more successfully. Hybrid PR37D25 had very high yields for the second and third sowing dates. The high-yielding hybrid PR34B97 also had high yield, but this was accompanied by higher seed moisture content. Due to the warm, sunny autumn weather, the hybrids had good water-release dynamics and were harvested with a lower seed moisture content than in the previous year. For the first sowing date, the seed moisture content was around 13-14% except for hybrid PR34B97. For the second and third sowing dates, higher values were observed. Leaf area index was significantly reduced in August for all three hybrids due to the hail in July. For the first two sowing dates, the leaves of hybrid Sze 269 were the first to dry similarly to the previous year.
Year had a strong effect on the results in both years. -
Effect of the plant density on different maize (Zea mays L.) hybrids yields and leaf area index (LAI) values
51-56Views:160We have investigated the plant number reactions of three maize hybrids of various genotypes in a small-plot field experiment. The plant numbers were 50, 70 and 90 thousand ha-1, while the row distances were 45 and 76 cm. The experiment was set on the Látókép Experimental Farm of Centre for Agricultural Sciences of the University of Debrecen in four replications on calcareous chernozem soil.
The assimilation area and the leaf area index have important role in development of the crop yield. The studied three different genotype maize hybrids reached its maximum leaf area index at flowering. The maximum leaf area index increased linearly with increasing plant density. The season-hybrids reached less yield and leaf area index. According to our experimental results, we have concluded that with the decrease of the row spacing, the yield increased in the average of the hybrids. The studied hybrids reached the maximum yield at 70 and 90 plants ha-1 plant density. We determined the optimal plant number that is the most favourable for the certain hybrid under the given conditions.The higher plant density was favourable at 45 cm row spacing than 76 cm. The hybrids reached the maximum grain yield at 45 cm row spacing between 76 712–84 938 plants ha-1, while the optimum plant density at 76 cm row spacing changed between 61 875–65 876 plants ha-1.
The leaf area index values between the applied plant density for the flowering period (July 1, 24), we defined a significant differences. In the archived yields were significant differences at the 45 cm row spacing between 50 and 70, 90 thousand ha-1 plant density, while the number for the 76 cm row spacing used did not cause a significant differences in the yield. There were significant differences between the examined hybrids of yields.
-
Evaluation of the Green bean variety candidate BU-16
75-81Views:86This study presents the results of the variety comparison trials conducted with the French bean variety candidate BU-16 on sandy soil, during two years at the Research Center of the University of Debrecen.
The outstanding characteristics of this variety candidate are the early maturity, the showy pods (yellow, straight, cylindrical cross-section „pencil bean”) and the high yield potential.
The experiments were conducted with a randomized design, with five varieties and four replications. The varieties (of which two are foreign and three are domestic) were as follows: BU-16 fj, Maxidor, Paridor, Hungold and Budai piaci. The individual plots were 2 m wide and 4 m long. The seeds were sown at a density of 30 germs per m2, with a row spacing of 50 cm.
The following parameters were taken: time of flowering, time of green maturity, plant height, height of the lowest pod above ground level, number of pods per plant, distribution of the pods by the state of development (20 plants), usable pod length (1 kg of standard crop-yield), yield per hectare based on the number of plants per plot. The experiments were evaluated statistically with Excel and SPSS softwares.
Results obtained with the variety candidate BU-16:
– The time from the emergence to green maturity is 45 to 46 days, which is short as compared with the other cultivars studied.
– Plant height is 38cm (two years average), which is among the highest ones, together with Paridor.
– The pods are set high above the ground level similarly to Paridor, the height of the lowest pod is 19 cm.
– The average number of pods per plant is 13 (two years average) similarly to Paridor and to Maxidor.
– The distribution of pod size in 2007 is as follows: 68% of the pods of BU-16 is of the standars size, which is a good rate. The value of this trait for the other varieties is 60 to 63%, except for Paridor, the value of which is similar to that of BU-16.
– The usable pod length (10 to 14 cm) is 63% in 2007 and 84% in 2006. Similar pod length rates were obtained for Maxidor, while the rate for Paridor is as high as 91%.
– The total yield and the standard yield of BU-16 is among the highest ones.
According to the results obtained and presented above, the variety candidate BU-16 is the earliest maturing among the varieties tested with high yield potential which, however, is not significantly different from that of the others. Significant differences can only be detected in plant height and the number of pods per plant. Considering the results, BU-16 is to be further tested. -
Host plant preference of Metcalfa pruinosa (Say, 1830) (Hemiptera: Flatidae) in the north of Hungary
84-95Views:251Citrus flatid planthopper, a native insect to North America had for a long time a scarce economic importance there. However, being polyphagous made little damage on citrus trees and some ornamentals. In 1979 it was introduced to Italy where it established and spread quickly. It is now an invasive alien species continually spreading in South and Central Europe causing considerable damage in fruit crops and various ornamentals. Present study shows the results of a series of observations carried out from 2011 to 2015 at a number of habitats in north of Hungary. The pest could be found at each habitat but the hedge, the tree row, the gardens and the orchard/vineyard were the most infested. Frequency and population density of Metcalfa pruinosa were considerable on Asteraceae, Cannabaceae, Fabaceae, Juglandaceae, Lamiaceae, Rosaceae and Sapindaceae. Typical vegetation could be functionally classified as ornamental plants, trees/shrubs, fruit plants, weeds and feral plants. Feral plants – some of them also invasive alien species – were found at each habitat. Plant species native to America were among them the most populated. As the hedgerows were neglected, and most gardens, orchards and vineyards abandoned, these are excellent conditions for the quick and long-lasting establishment of the pest as well as they may be reservoirs to infest cultivated fruit crops and ornamentals. The hedgerow was situated along a railway line. The length of similar hedges can be merely in Pest county several hundred km, which means M. pruinosa has plenty of opportunity for spreading along the railway and infest agricultural and ornamental cultures. On the surveyed alfalfa and maize fields, accidentally very few nymphs and adults were observed. Although, the population density of M. pruinosa was considerable on many hostplants, economic damage or yield losses could not be detected. Economic or significant damage was observed only on roses, raspberries and stinging nettle. This later is cultivated in Germany and Finland. The applied horticultural oil was efficient.
-
Examination of French bean on organic and conventional farming of Research Centre of Nyíregyháza
87-98Views:111This study presents the yield results of some French bean varieties in organic and conventional farming. This study presents the advantage of organic farming in environmental point of view and in nutrition. Sale of organic products is insured, there is solvent demand rather in abroad than in Hungary.
In Research Centre of Nyíregyháza had made organic farming since 1994, at present on 74 hectares.
In the first trial, variety comparison with 9 yellow podded French beans in organic and conventional farming was conducted. Varieties: Carson, Cherokee, Debreceni sárga, Goldmine, Héliosz, Minidor, Sonesta, Sundance és Unidor. The following parameters were observed: the time of emergence and flowering, number of plants per plot, plant height and flowing green harvest. We weighed yield of the standardized, un-standardized and diseased pod fractions. The results were evaluated statistically with SPSS and Excell softwares.
Emergence had all at once, but the plants of organic farming were 5 days earlier at flowering and maturity, than conventional farming.
The plants in organic place were more developed than in conventional ones. Emergence was more uniform, the growth and the number of plant were square. Significant difference was not detected in plant height between two places. Most of the varieties examined had better total yield in organic place, than in conventional ones. Deviation depended on variety. ‘Sonesta’ and ‘Debreceni sárga’ had the best yield in both places. In
conventional farming choice can be expanded with ‘Unidor’ and ‘Sundance’. In organic farming choice can be expanded with ‘Minidor’ and ‘Carson’.
In both places the Sonesta, Debreceni sárga and Unidor varieties had the most standardized yield per hectare. In organic place Carson variety had good pod yield because it was infected less by diseases.
In the another trial we studied inside content values of some varieties on organic and conventional places. The parameters were observed: dry matter-, starch-, crude fibre-, crude protein content and amino acid content.
The rates of asparagin or glutamine acid were the highest, which was followed by serin or histidine. In asparagin content was the most deviation between conventional and organic farming.
Significant differences were between varieties in dry matter-, starch-, crude fibre-, and crude protein content both on organic and conventional places. Each variety had significant differences between organic and conventional farming.
Starch had strong and negative correlation with dry matter, crude fibre and crude protein content.
Budai piaci and Minidor varieties and BU-16 variety candidate had higher starch content and lower dry matter, crude fibre and crude protein content on organic place. Sonesta variety had almost equal dry matter content on both places, but crude protein content was higher with 10% and starch content was lower with 6% on organic place, than on conventional place. Paridor variety had almost equal starch content, but it had higher dry matter and crude protein content on organic place. -
Examination of Zn deficiency on some physiological parameters in case of maize and cucumber seedlings
5-9Views:111Zinc (Zn) is an essential micronutrient needed not only for people, but also crops. Almost half of the world’s cereal crops are deficient in
Zn, leading to poor crop yields. In fact, one-third (33%) of the world's population is at risk of Zn deficiency in rates, ranging from 4% to
73% depending on the given country. Zn deficiency in agricultural soils is also a major global problem affecting both crop yield and quality.
The Zn contents of soils in Hungary are medium or rather small. Generally, the rate of Zn deficiency is higher on sand, sandy loam or soil
types of large organic matter contents. High pH and calcium carbonate contents are the main reasons for the low availability of Zn for
plants (Karimian and Moafpouryan, 1999). It has been reported that the high-concentration application of phosphate fertilisers reduces Zn
availability (Khosgoftarmanesh et al., 2006). Areas with Zn deficiency are particularly extensive in Békés, Fejér and Tolna County in
Hungary, yet these areas feature topsoils of high organic matter contents. Usually, Zn is absorbed strongly in the upper part the soil, and it
has been observed that the uptakeable Zn contents of soil are lower than 1.4 mg kg-1.
Maize is one of the most important crops in Hungary, grown in the largest areas, and belongs to the most sensitive cultures to Zn
deficiency. Zn deficiency can causes serious damage in yield (as large as 80 %), especially in case of maize. On the other hand, Zn
deficiency can also cause serious reduction in the yields of dicots. One of the most important vegetables of canning industry is cucumber,
which is grown all over the world.
In this study, the effects of Zn deficiency have investigated on the growth of shoots and roots, relative and absolute chlorophyll contents,
fresh and dry matter accumulation, total root and shoot lengths, the leaf number and leaf area of test plants in laboratory. Experimental
plants used have been maize (Zea mays L. cv. Reseda sc.) and cucumber (Cucumis sativus L. cv. Delicatess). A monocot and dicot plant have
chosen a to investigate the effects of Zn deficiency, because they have different nutrient uptake mechanism.
It has been observed that the unfavourable effects of Zn deficiency have caused damage in some physiological parameters, and
significantly reduced the growth, chlorophyll contents of monocots and dicots alike. -
Element Content of Herbaceous Plants in the Floodplain Meadows
55-58Views:132Animals require well-balanced nutrition. The elemental content of the vegetation of meadows is influenced by as many factors such as heat, rainfall, irrigation, soil type and nutrients, meadow types, species, aspects of the vegetation period and cultivation.
Natural meadows used extensively are common sights on river floodplains. Since chemicals are banned and the species number is high, measuring the elemental composition of plants on these meadows is beneficial. Cenological survey and element content measurements were held on the rich flora of four natural meadows in the year 2001.
Weeds, in a wider sense, are plants not directly involved in growing, although their nutritional values make them important costituents of feed. Meadows are enriched by their relatively high microelement content.
On the sampling sites, the ratio deviated from the ideal 2/3 parts monocotyledon and 1/3 part dicotyledon, but this did not mean a Mn deficiency as it would have been assumed. -
Evaluation of reduced tillage technologies in corn production based on soil and crop analyses
47-54Views:177Despite new cultivation methods, the proportion of conventionally cultivated land is still very high in Hungary.
Although these technologies demand more time, labour and fuel, they are still attractive to users because they require less professional skill and simple machinery. In Hungary, conventional tillage methods usually lead to soil deterioration, soil compaction and a decrease in organic content. These side effects have caused gradually strengthening economic and environmental problems.
The technologies for those plants which are dominant on Hungarian arable lands use (winter wheat, maize, sunflower and barley) need to be improved both in the interest of environmental protection and the reduction of cultivation costs.
The Department of Land Use at Debrecen University is cooperating with KITE Sc. to carry out soil tillage experiments at two pilot locations to prove tillage technologies already used in the USA.
The aim of our examination is to adapt new technological developments and machinery, and to improve them on Hungarian soil for local environmental conditions. With these improved machines, the field growing of plants could be executed by less manipulation and better suited to economic and environmental needs. The most significant task is to investigate and improve the conventional cultivation replacing, new soil-protecting tillage technologies, and to apply no-till and mulch tillage systems.
On the basis of the experiments’ survey data, we established that the looseness and moisture content of the soil using reduced tillage is more favourable than after using conventional technologies. The results of no-till and shallow spring tillage are behind those of winter plough or disk ripper cultivation in corn yield and production elements.
To preserve moisture content in the soil, the ground clearing and sowing while simultaneously performing no-till method presents the most favourable results. The surplus moisture gained using no-till technology is equal to 40 mm precipitation.
Regarding the yield of winter wheat we established that the tillage methods do not affect plant yield. Both disk ripper and conventional disc cultivation showed nearly the same harvest results (5.55 or 5.5 t/ha), where the difference is statistically hardly verifiable from the no-till method. From the individual production of corn and the number of plants planted in unit area, calculated results prove that no significant difference can be detected between the production of winter plough and disk ripper technology. Although the yield achieved with the no-till method is less than with the previously mentioned technologies, the difference is only 9-10%. We received the lowest production at shallow spring tillage.
Evaluations have shown a 1.1 t/ha (13%) difference in the yield of maize, between winter tillage and the disk ripper method, in this case the traditional method resulted in higher yield. In winter tillage, the yield of maize was 1.9-2.1 t/ha (23-25%) higher than in the case of direct sowing and cultivator treatments. No significant difference could be noted between the yields of direct sowing and cultivator treatments.
Our research so far has proved the industrial application of reduced tillage methods in crop cultivation technologies. -
Comparative analysis of Staphylococcus aureus strains by molecular microbiology methods
34-39Views:167Staphylococcus aureus is a very important pathogen for dairy farms and milk processing plants. Subclinical mastitis is often caused by this species, and it can contaminate bulk tank milk when milking cows are suffering from mastitis. Additionally, thermostable enterotoxins (SE) produced by some types of this bacterium can cause food poisoning.
The aim of our research was to examine the number of S. aureus in bulk tank milk in two dairy farms and the enterotoxin-producing ability, genetic relation (pulsotype) and antibiotic resistance of S. aureus strains from different sources (bulk tank milk, udder quarter milk and environment).
The results show that the mean number of S. aureus of bulk tank milk of two farms significantly differed (P<0.05). Fourteen isolates were selected for further molecular genetic studies (five isolates were from bulk tank milk and nine isolates were from udder quarter milk). S. aureus was not recovered from the environmental samples. Three of the fourteen isolates (21.4%) tested by multiplex PCR were positive for SE genes. Two isolates carried one gene (seb) and one isolate carried two genes (seg and sei). The fourteen strains were classified into three pulsotypes and two subtypes at 86% similarity level. Isolates from bulk tank milk (n=5), were divided into 2 pulsotypes (A, C) and one subtype (C1). The isolates from udder quarter milk (n=9) belonged to three different pulsotypes (A, B, C) and two subtypes (A1, C1). The distribution of pulsotypes in the present study revealed genetic relationship between S. aureus isolated from udder quarter milk and bulk tank milk. This could be explained by the fact that in farms with a high number of infected cows, these cows could represent the main source of contamination. The results of the antibiotic resistance investigations show, that all strains were susceptible to methicillin, cefoxitin, lincomycin, tetracycline, erythromycin and sulfamethoxazole/trimethoprim. Thirteen out of fourteen strains were resistant to penicillin (A and C pulsotypes, A1 and C1 subtypes) and just one isolate was susceptible (B pulsotype) to all antibiotics tested. -
Application of GIS, precision agriculture and unplugging cultivation in plant breeding of Karcag
49-56Views:187In the last two decades, the prevailing ecological conditions and climate change have caused negative effects. Therefore, a paradigm shift is needed in the field growing of plants. The latest inventions, digital technologies, precision cultivation are not enough, the mentality of the farmers is more important. For this reason, not only big financial sacrifices, but adequate receptivity are needed on behalf of farmers. Adequate skills and continuous self-education are necessary. The yield of plant growing farms is determined by ecological conditions to a 40% extent, genetic background of the seed has a 30% share and the applied agricultural technology has a proportion of 30%. In different agroecological conditions, bred varieties of plants have bigger tolerance to unfavorable factors of the regions and significant yield stability. Farmers, who buy and sow seeds, can only contribute to the genetic potential of the seeds with cultivation technology. Plant breeding provides stable genetic background and good quality seeds. Breeding activity – choosing variety proposants, breeding them, selection work, classical breeding process for 8-10 years – must create new landraces, which can produce balance, high yield and have good quality parameters in extreme ecological conditions, yearly excursion and have higher tolerance to unfavorable factors of the region giving significant production stability for farmers. In Karcag GIS technology, precision cultivation elements and soil-friendly agrotechnical methods have been introduced which largely support the aims of breeding and can also provide optimal cultivation conditions in extreme years. Because of the specificity of breeding the main aim is not only to increase yield but to provide harmonic growing for bred materials, to decrease the number and the cost of cultivation and to be punctual. In this study, applied new methods and technologies are introduced.
-
Supplementary botanical examinations for modelling the grass production of the great pasture of Hajdúbagos
17-21Views:74Our botanical survey at the great pasture of Hajdúbagos is a part of a broad research that aims to predict the production of the grass at the given area. As the mentioned pasture is a nature conservation area, the usage of artificial fertilizers or other classic grassland management methods in its handling are prohibited. Thus grazing is an important tool for the management of this area, however the not suitably regulated grazing order and the poorly calculated carrying capacity cause serious problems at some parts of the pasture. The prediction of the grass yield is essential to
avoid both over- and both under-grazing and for determining the optimal number of the grazing animal stock and the grazing method, thus the most suitable management strategy.
The potential grass yield is easily calculable with a computer model that will be established as a basis for determining the grass production. For the sake of getting an accurate view of the plant associations of the pasture, we created examination quadrates and determined all plant species found in the quadrates. After plant determination, we compiled a coenological table in which we marked besides the scientific name and families, the life forms of each species that refer to the structure, morphology and thus the adaptability of plants to their environment. We determined the
TWR, so the thermoclimate, water and soil reaction values, the nature conservation values, as well as the covering values of each plant species (DB), and the total coverage of the examination quadrates (B%).
According to the covering values, grasses proved to be characteristic plants at the examined pasture, thus we need to consider them influential in calculating the animal carrying capacity and with the rest of the information, we need to supply the model.
The life forms and TWR indicators, all together with the nature conservation values provide further important data to the development of the management suggestion of the protected pasture. By examining these values to different parts of the area, we could get an exact view on the measure of the degradation effects. This promotes the determination of grazing methods and the forming of the boundaries of certain pasture sections, to avoid those harmful anthropogenic effects that seriously endanger this extensive sandy pasture. -
Slight damage of the great green bush-cricket (Tettigonia viridissima) (Orthoptera: Tettigoniidae) in some Hungarian maize fields
65-70Views:245Characteristic cricket damage was observed in two maize fields in northern Hungary, at Máriabesnyő, a district of Gödöllő. The damage level of the two fields did not differ significantly and continual monitoring of field1 showed also a stable infestation level. T. viridissima nymphs and a female were found and observed as feeding on maize plants. The crickets must have disappeared after 18.07. because no more fresh damage was observed after this date. The chewing’s number about on one and two % of the examined plants amounted one and six a plant and their size was between one and eight cm2. This infestation was quite little and might have caused apparently no yield loss. Compared this damage of T. viridissima with former Hungarian experience, this was the usual negligible damage despite the explicit draught in July and August 2015. As regards the global warming, orthopteran damage may be more obvious in the future.
-
Analysis of the situation of domestic game damage and forage ground management
5-8Views:167Game damage is an important problem in home wildlife management, because game managers pay more and more money for game damage year by year. Crop fields can do an appreciable part in reduction of game damages. The aim of the research is to survey the situation of domestic game damage and wildlife forage ground management. (Which are the most used plants on crop fields, how current are the using of seed mixtures, which are the most typical game damages, as well as which are the most applied game control methods?)
It can be stated that the number of plant species sown on crop fields is quite low. Mostly corn and alfalfa are raised, though besides those many other plants are suitable to grow on crop fields. Rising value of game damage and big proportion of the agricultural game damage are well traceable from the questionnaires, too.
-
The impact of sowingdate and production area on the yield of white lupin (Lupinus albus L.) on Nyírség brown forest soil
133-137Views:141The lupine is very sensitive to the different ecological conditions. The examinations of lupine was started in 2003 and our aim is determine yield components which directly affecting crop yields (flower, pod and seed number per plants) in different sowing times (3 times, two weeks apart) and growing area area (240, 480, 720 cm2) combinations. According to our results the sowing times, the growing area and the meteorological conditions are influence on yield significantly. Our data suggest that the early sowing and large growing area combination is favourable to rate of fertilized plants and to development of yield. Later sowing reduces the seed yield depending on the cropyear. In our experiment, the decrease of yield was in the unfavourable year (2003) 20–96%, and in the most favourable meteorological conditions (2004) 10–79%, and in rich rainfall year (2005) 15–88%.
-
Technological development of sustainable maize production and its effect on yield stability
379-388Views:204In 2015 and 2016, we examined the effect of NPK nutrients, sowing date and plant density on yield on typical meadow soil. The amount of precipitation was 282.0 mm in 2015 (January–September), 706.0 mm in 2016 and the 30-year averageis 445.8 mm.Agrotechnical factors:– Experiment a)5 Dow AgroSciences hybrid with three sowing dates and three plant densities– Experiment b)In 2015 eight, in 2016 ten hybrids with different genetic characteristics and growing seasons, with control (without fertilization), N80+PK and N160+PKtreatments, five plant densities (50–90 thousand) with 10 thousand plants difference between the different densities.
In a drought year, we reached the higher yield in the earlier sowing date and with the lower lower plant density of 70 thousand plants ha-1-. The maximum yield, depending on the agrotechnical factors, was 10–12 t ha-1 in 2015, while in 2016 it was 14–16 t ha-1. Yield stability can be increased using hybrid-specific cultivation techniques. -
Change of soil nitrogen content in a long term fertilization experiment
39-44Views:159The most important aim of sustainable agriculture is to ensure our natural resources – such as soils – protection, which includes fertility preservation and the use of appropriate methods of cultivation.
If we want to get accurate information about the occurred changes, way and danger of changes, we should track the resupply and effect of the mineral nutrients and the removed quantity of nutrients with the harvest.
Nitrogen is an essential element for living organisms and it is present in the soil mainly in organic form. In general only a low percentage of the total nitrogen content can be used directly by plants in the soil. The mineral nitrogen is incorporate by plants into our bodies. This inorganic nitrogen is produced by the transformation of organic contents through mineralization processes and it gets into the soil by fertilization. This is how nitrogen turnover occurs when mineral forms become organic and organic forms become mineral.
The objective of this publication was to introduce – through some element s of nitrogen turnover- how changing the properties of soil in a long term fertilization experiment.
We established that the fertilization is influenced the soil pH. With the increase of fertilization levels increased the acidity of the soil, maybe it is related with the number of nitrification bacteria. The fertilization and the rotation affected to the quantity of nitrate.