Search

Published After
Published Before

Search Results

  • Effect of the crop-year on plant protection feature of sunflower
    71-75
    Views:
    159

    Our study focused on plant density reactions of sunflower hybrids on chernozem soil in years with different levels of available water (2011 and 2012). We studied factors (i.e.infections, yield) that are most affected by the amount of precipitation.

    However the amount of precipitation varied in 2011 (average amount of precipitation) and 2012 (drought), Sclerotinia and Diaporthe infections were significant in both years. Diaporthe was stronger in 2011 while in 2012 Sclerotinia infections were greater than average. Higher plant density provided for a favorable microclimate for pathogens meaning that increased stock density enabled enhanced infections. Maximum levels of infections in both the cases of Diaporthe and Sclerotinia were measured at a plant density level of 65 000 plants ha-1.

    2012 yields (control: between 2 289 and 3 261 kg ha-1, two-time treated: between 2 699 and 3 659 kg ha-1) were significantly lower compared to the results of 2011 (control: between 2 825 and 3 672 kg ha-1, two-time treated: between 3 059 and 4 059 kg ha-1). Fungicide treatments led to an increased yield in both years: 9.5% in 2011 and a notable, 15.1% growth in 2012. We applied regression analysis to calculate optimum plant density for the examined years and treatments. Based on the calculations we found that in the cases of both treatments optimum plant density was 53 000 plants ha-1, while in 2012 the optimum was higher due to lower level of infections: 56 000 plants ha-1 in the control stock and 64 000 plants ha-1 in the stock treated twice.

  • Role of some agrotechnical elements in the precision crop technology of cereals
    241-244
    Views:
    124

    The crop models and precision technology have an important role in the development of winter wheat and maize agrotechnics, which crops have determinative role in Hungarian crop production. The effects of agrotechnical elements (crop rotation, fertilization, irrigation, crop protection, plant density) were studied in our longterm experiments on chernozem soil. Our scientific results proved that the high yields, and good yield stability were obtained in the input-intensive crop models. Maize had lower ecological adaptive capacity than winter wheat. The optimatization of agrotechnical elements reduces the harmful climatic effects so we can increase the yield and yield stability of cereals agro-ecosystems. The yields of wheat varied between 2 and 7 t ha-1 in extensive and 8 and 10 t ha-1 in intensive crop models and the yields of maize ranged between 2 and 11 t ha-1 and 10 and 15 t ha-1, respectively.

  • The impact of climatic factors on the relative chlorophyll content and yield of a maize hybrid in a long-term experiment
    71-77
    Views:
    211

    The impact of the climatic factors of crop year on the relative chlorophyll content of maize was examined for three years. The examinations were carried out on the Látókép Experiment Site of the University of Debrecen on calcareous chernozem soil in a small-plot, non-irrigated long-term field experiment with strip plot design. In addition to a non-fertilised (control) treatment, nitrogen (N) fertiliser doses were applied as base and top dressing. The 60 and 120 kg N ha-1 base dressing doses were followed by two top dressing doses at the V6 and V12 phenophases.

    Averaged over the different fertiliser treatments, SPAD readings increased in all three years as the growing season progressed. The highes SPAD value increase was observed in the average crop year (2017) at the V12 phenophase (11.8), which further increased at the R1 phenophas, by 3,7. No significant Spad value difference was observed between the average (2017) and the dry year (2018) at the V6 growth phase. However, in the wet crop year (2016), the V690 treatment provided the statistically highest relative chlorophyll content (46.8). At the V12 phenophase, the base dressing dose of 120 kg N ha-1+30 kg N ha-1 (V6150) showed to be successful in two years (2016 and 2018), while in 2017, the base dressing dose of A60 was successful. The impact of crop year on relative chlorophyll content can be clearly shown at the R1 growth stage. In all three years, the significantly highest relative chlorophyll content could be achieved at different nutrient levels: A60 in 2016, V6150 in 2017 and V690.

    In a wet year (2016), higher yield could be achieved as a result of the 60 kg N ha-1 base dressing and 30 kg N ha-1 at the V6 growth stage (V690) as top dressing in comparison with 2017 and 2018, when higher fertiliser dose (120 kg N ha-1 base dressing and 30 kg N ha-1top dressing at the V6 growth stage) was needed to achieve a significant yield surplus.

    Altogether, averaged over the different treatments, the highest yield (12.48 t ha-1) was observed in the wet year, when the relative chlorophyll content was also the highest (50.6).

  • The effect of agrotechnological factors and the cropping season on sweetcorn (Zea Mays L. convar. saccharata Koern.) production in a humid year
    146-151
    Views:
    75

    We have examined the effect of three agrotechnological factors (sowing time, fertilization, crop density) and four genotypes on the yield
    of sweetcorn on chernozem soil in the Hajdúság region in 2009. The experiment was set up at the Látókép Research Site of the University of
    Debrecen. We have included two sowing times (27 April, 26 May), six nutrition levels (control, N30+PK, N60+PK, N90+PK, N120+PK,
    N150+PK) and four genotypes (Jumbo, Enterprise, Prelude, Box-R) at two crop density levels (45 thousand ha-1).
    In the humid cropyear of 2010 the amount of precipitation exceeded the 30-year average by 184 mm in the cropping season; the average
    temperature exceeded the same by 0.8 C on the average of the examined months. The circumstances were most favourable for sweetcorn
    production with the first sowing time, thus, this was when the yield of all hybrids was the highest.
    With early sowing time, the highest yield (23437 kg ha-1 yield) was obtained with Enterprise at 45 thousand ha-1 crop density level at
    N150 + PK nutrition level. The highest yield of the other three hybrids was 22253 kg ha-1 (Jumbo) 22286 kg ha-1 (Box-R) and 1873 kg ha-1
    (Prelude). With the second sowing time, the highest yield was obtained with Enterprise again (22237 kg ha-1) at 65 thousand ha-1 crop
    density level. With this sowing time the yield of Jumbo, Box-R and Prelude was 20888 kg ha-1, 17796 kg ha-1 and 17401 kg ha-1, respectively.
    We found that the highest yield was obtained at the highest nutrition levels (N120 + PK, N150 +PK) with the first sowing time, while the same
    was obtained at lower nutrition levels (N90 + PK, N120 + PK) with the second sowing time.

  • Effect of NPK fertilization on the yield and yield stability of different maize genotypes
    101-104
    Views:
    138

    The yielding capacity and quality parameters of 11 maize hybrids were studied in 2011 on calcareous chernozem soil in a 25-year long-term fertilization experiment in the control (without fertilization), in the base treatment of N 40 kg ha-1, P2O5 25 kg ha-1, K2O 30 kg ha-1 and in five treatments which were the multiplied doses of the base treatment. The N fertilizer was applied in the autumn and in the spring, while P and K fertilizers were applied in the autumn.The sowing time was 17–18 April, the time of harvest was 8 October. The 30-year average of precipitation (April–Sept) was 345.1 mm, the amount of precipitation did not differ greatly from that, however, its distribution was very unfavourable.
    It was found that the largest yield increment (as compared to the control) was in the treatment N 40 kg ha-1, P2O5 25 kg ha-1, K2O 30 kg ha-1 in the long-term experiment. The largest yields were obtained for the hybrids P9494, PR37N01 and PR35F38 (13.64–13.71 t ha-1). Due to the dry period at the end of the summer – beginning of autumn, the grain moisture content at harvest was favourably low, 12–18% depending on the treatment and the growing season.

    The N fertilization significantly increased the protein content of the kernel, but the starch content of the kernel decreased (significantly in several cases) with increasing fertilizer doses and yields as compared with the control.
    The highest protein content was measured in hybrids GK Boglár and Szegedi 386. The oil content was above 4% for GK Boglár, but the two hybrids were not among the best yielding hybrids in spite of their good inner content. The starch content was around 75 % without fertilization, it decreased with fertilization.
    For the tested hybrids, the fertilizer dose N 120 kg ha-1, P2O5 75 kg ha-1, K2O 90 kg ha-1 can be recommended with respect to efficacy and environmental considerations.

  • The Effect of Year and Irrigation on the Yield Quantity and Quality of the Potato
    12-16
    Views:
    101

    In Hungary, the growing area of potato area reduced dramatically in the last few decades, additionally we are lagging behind the Western European countries as regards yields and the competitiveness of production is further decreased by the great alternation in yields from year to year, the unpredictable market conditions, bad consumption habits and many times unfortunately the lack of quality products.
    The ecological and climatic conditions of Hungary are not everywhere suitable for potato, in the area of Debrecen the amount of rainfall was lower, and the monthly average temperature was higher than the requirement of potato in its growing season in 2002 and 2003.
    The experiment was carried out at the experimental site of the University of Debrecen, Farm and Regional Research Institute, at Látókép. In our experiment we examined the yield and some quality parameters of 8 and 9 medium-early varieties in large parcels in 2002 and 2003 respectively. Out of the examined varieties 3 are of Dutch, and 6 are of Hungarian breeding.
    The experiment was set up on 49.5 m2 parcels on calcareous chernozem soil after winter wheat as a forecrop in both years. The 9 varieties were examined in 4 repetitions in randomized blocks, out of which two repetitions were irrigated, and two were non-irrigated.
    We examined the yields of the varieties, the distribution of tubers according to size and their percentages, and the changes in specific parameters of quality and inner content due to irrigation. We studied the dry matter content, the starch content, the under-water mass, the amount of reducing sugars, the colour index of frying and the element contents of tubers.
    Summing up, it can be stated that among the agrotechnical year effect, variety and irrigation factors have considerable impact on potato yield quality and quantity. On the basis of our results, it can be stated that in potato production variety should be chosen in accordance with the aim of production and technology should be adapted to that specific variety.

  • The significance of biological bases in maize production
    61-65
    Views:
    165

    The comparative trial has been set up in the Demonstration Garden of the Institute of Crop Sciences of the University of Debrecen, Centre for Agricultural and Applied Economic Studies, Faculty of Agricultural and Food Sciences and Environmental Management in 2012, with 24 hybrids with different genetic characteristics and growing periods. The soil of the trial is lime-coated chernozem, with a humus layer of 50–70 cm.

    The weather of the trial year was quite droughty; the monthly average temperature was 3–4 oC higher than the average of 30 years. High temperature, together with lack of precipitation occurred during the most sensitive phenophases of maize (flowering; fecundation, grain saturation).

    The following characteristics have been observed: starting vigour, date of male and female flowering, plant and cob height, dry-down dynamics during maturation and the change of yield composing elements has also been quantified. The yield was recalculated to 14% moisture content grain yield after harvesting.

    The beginning of the growing period was advantageous, therefore the analysed hybrids could grow a high (above 300 cm) and strong stem. The yield of the hybrids changed between 10.33 and 11.87 t ha-1, but as a result of the unfavourable climatic extremes, their genetic yield potential prevailed only at a rate of 30–40%. However, moisture content by the time of harvesting was good despite its early date (12th September); it remained under below 14% in most cases. Dry-down was measured on a weekly basis between 14th August and 5th September.

    The analysis of the qualitative parameters of the maize hybrids (protein %, oil % and starch %) resulted in significant differences. The most significant difference has been observed in the case of protein content (LSD5%=2.01). Oil content was the most advantageous in the case of hybrids belonging to the mid-late growing group (FAO 400). The X9N655 and 36V74 hybrids had the highest oil content (around 4%), while hybrids P9915 and 37F73 had significantly lower oil content. Starch content was above 70% in the case of every hybrid.

    Hybrid selection is highly important in terms of yield and yield security of maize, as well as the application of modern biological fundamentals and hybrid specific technology for the improvement of the level of cultivation technology.

  • Evaluate the nutritional reaction at winter wheat after different forecrops
    77-80
    Views:
    128

    Our field researches took place on the Látókép test farm of Agricultural Science Centre of University of Debrecen, Centre for Agricultural and Applied Economic Sciences, in long-term experiment, on calcareous chernozem soil, in growing season of 2014/2015. In our experiment we examined the fertilizer reaction and the yield of different winter wheat genotypes (GK Öthalom, GK Csillag, Mv Csárdás, Mv Toldi) with grain maize and sweetcorn forecrops. According to our results, the sweetcorn forecrop strongly affected the yield. In the average of the fertilizer treatments and the varieties, after sweetcorn forecrop 6.9 t ha-1, after grain maize forecrop 5.4 t ha-1 average yield was gained. According to our data, the fertilizer reactions of the varieties were significantly different.

  • Examining reaction of sunflower genotypes on planting time on chernozem soil
    93-99
    Views:
    109

    We studied the effect of planting time on plant pathological factors, leaf area index and yield production by applying various fungicid treatments on two different sunflower genotypes in 2013.

    By delaying planting time, both the extent of Diaporthe, Alternaria and Phoma infections decreased. The differences between the volume of infections were significant in the case of the early and late sowing time results. The application of fungicide treatments induced a notable decrease in the extent of infections for all three pathogens examined. The LAI-values varied between 0.3 and 5.6 m2/m2 in 2013 depending on the hybrid, sowing time and treatment. Stocks planted at distinct times reached maximum leaf coverage at different times. The planting time and the fungicide treatment had a significant effect on the formation of the leaf area. In the case of average and late planting times, fungicide treatments elongated the preservation of the green leaf area.

    With respect to the yield amount, average planting time (27 April, 2013) turned out to be optimal in 2013 (control – NK Ferti: 4.621 kg ha-1, PR64H42: 4.196 kg ha-1; double-treated: NK Ferti: 5.282 kg ha-1, PR64H42: 5.090 kg ha-1). Fungicide treatments resulted in significant yield growth in all cases during our research.

    We applied Person correlation analysis to evaluate the hybrids’ sensibility to infections and our results varied in the case of Diaporthe and Phoma (r=-0.343*, -0.379**). Infections of the three pathogens were significantly reduced by delaying the planting time and applying fungicides. Late sown stocks preserved the green leaf area for a longer period. Besides, the application of the fungicide treatment and the hybrid itself also led to the preservation of the green leaf area. However, pathogens examined notably decreased the leaf area by the end of the growing year. The fungicide treatment had a remarkable effect on yield growth (r=0.603**). Furthermore, the presence of higher LAI-values in the period prior to August also induced higher yields.

  • Effects of the cropyear and the agronomical factors on agronomical elements of different sweet corn (Zea Mays L. convar. saccharata Koern.) genotypes in long-term experiment
    105-110
    Views:
    102

    In the crop season of 2010 (rainy year), we studied the effect of three agrotechnical factors (sowing time, fertilization, plant density) and four different genotypes on the agronomical characteristics of sweet corn on chernozem soil in the Hajdúság. The experiments were carried out at the Látókép Experimental Farm of the University of Debrecen. In the experiment, two sowing dates (27 April, 26 May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and four genotypes (Jumbo, Enterprise, Prelude, Box-R) were used at two plant densities (45 thousand plants ha-1, 65 thousand plants ha-1). The amount of precipitation in the season of 2010 was 184 mm higher, while the average temperature was 0.8 oC higher in the studied months than the average of 30 years. Weather was more favourable for sweet maize at the first sowing date, if we consider the yields, however, if we evaluate the agronomical data and yield elements (number of cobs, cob length and diameter, the number of kernel rows, the number of kernels per row) it can be stated that the size of the fertile cobs was greater at the second sowing date due to the lower number of cobs. The largest number of fertile cobs was harvested in the case of the hybrid Enterprise (72367.9 ha-1) in the higher plant density treatment (65 thousand ha-1) at the fertilization level of N120+PK when the first sowing date was applied. The largest cobs were harvested from the hybrid Box-R (cob weight with husks: 516.7 g, number of kernels in one row: 45.7) at the lower plant density (45 thousand plants ha-1) in the second sowing date treatment. Cob diameter and the number of kernel rows were the highest for the hybrid Prelude.

  • Correlation between the weather in 2017 and the productivity of maize
    89-93
    Views:
    160
    In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize. The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2; therefore, this experiment was half-industrial. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. The yield increasing effect of the fertilizer also depended on the number of plants per hectare to a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants ha-1.
    In Hajdúszoboszló in 2017, up to October, 445.8 mm of rain fell, which is in line with the average values of 30 years, and is only 45.7 mm less than those. In 2017, the effect of increasing the plant number was slighter. Averaged over the observed fertilizer treatments and hybrids, the yield was 9.10 t ha-1 with 60 thousand plants ha-1, 9.11 t ha-1 with 70 thousand plants ha-1 and 9.12 t ha-1 with 80 thousand plants ha-1. Without fertilization, in most cases, increasing the plant number from 60 thousand plants ha-1 to 70-80 thousand plants ha-1 does not increased the yield but decreased it. With N80+PK treatment the yield changed between 8.90 and 11.27 t ha-1. The effect of increasing the plant number was just slightly observable and did not show a clear tendency. The effect of changing the plant number, even with the highest dosage of fertilizers, could not be detected adequately. In contrast with the plant number, the effect of the different fertilizer treatments was expressly traceable. Compared to the control treatment (treatment without fertilization), with N80+PK fertilizer dosage with 60 thousand plants ha-1 the yield increased by 3.36–4.99 t ha-1. The smallest demonstrable proof, i.e. the LSD5% was 0.22 t ha-1, which means that fertilization, in each case, significantly increased the yield. When analysing the effect of fertilization in the average of the hybrids and the different plant numbers, a yield of 5.61 t ha-1 could be detected, which value was 10.12 t ha-1 with N80+PK treatment and 11.61 t ha-1 with N160+PK treatment. Thus, it can be calculated that compared to the treatment without fertilization, the N80+PK treatment increased the yield by 4.51 t ha-1, while compared to the N80+PK treatment, the N160+PK treatment increased the yield by 1.49 t ha-1. In addition to agrotechnical factors, in maize production, the impact of the crop year is specifically of high importance.
    The average yield of hybrids (in the average of the different fertilizer treatments) was 6.81 t ha-1 in 2015, 11.86 t ha-1 in 2016 and 9.11 t ha-1 in 2017. When comparing the yield results against the precipitation data, it is clearly visible that the amount of rain fell in the January– October period is directly proportional to the average yield of maize. The effect of the crop year can be defined in a 5.05 t ha-1 difference in the yield.
  • Efficiency of Fertilization in Sustainable Wheat Production
    59-64
    Views:
    106

    In sustainable (wheat) production plant nutrition supply and fertilization play decisive roles among the agrotechnical elements, because of their direct and indirect effects on other agronomical factors.
    In long-term experiments, we studied the roles of agroecological, genetic-biological and agrotechnical factors in the nutrient supply, fertilization and its efficiency in wheat production under continental climatic conditions (eastern part of Hungary, Trans-Tisza) on chernozem soil. Our results have proved that there are different (positive and negative) interactions among ecological, biological, and agrotechnical elements of wheat production. These interaction effects could modify the nutrient demand, fertilizer (mainly nitrogen) response of wheat varieties and efficiency of fertilization in wheat production.
    The optimum N-doses (+PK) of wheat varieties varied from 60 kg ha-1 (+PK) to 120 kg ha-1 (+PK) depending on cropyears, agrotechnical elements and genotypes. The winter wheat varieties could be classified into 4 groups according to their fertilizer demand, natural and fertilizer utilization, fertilizer response and yield capacity.
    Appropriate fertilization (mainly N) of wheat could affect both the quantity and quality of the yield. By using optimum N (+PK) fertilizer doses, we could manifest genetically- coded baking quality traits of winter wheat varieties and reduce quality fluctuation caused by ecological and other management factors. The efficiency of fertilization on different baking quality parameters (wet-gluten, valorigraph index etc) were variety specific (the changes depended on genotypes).
    Our long-term experiments proved that appropriate fertilization provides optimum yield, good yield stability and excellent yield quality in sustainable wheat production. We could this get better agronomic and economic fertilization efficiency with less harmful environmental effects.