Articles

Investigation of the impacts of the by-product of sewage treatment on some characteristics of maize in the early growth stage

Published:
December 1, 2023
Authors
View
Keywords
License

Copyright (c) 2023 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Kaczur, D., Moloi, M. J., Takácsné , M. H., & Tóth, B. (2023). Investigation of the impacts of the by-product of sewage treatment on some characteristics of maize in the early growth stage. Acta Agraria Debreceniensis, 2, 77-82. https://doi.org/10.34101/actaagrar/2/12565
Received 2023-03-30
Accepted 2023-10-10
Published 2023-12-01
Abstract

The use of sewage sludge on arable land has been widespread for many years. This by-product, treated as waste, can provide valuable nutrients to the soil, but the applied amount of sewage sludge to arable land is limited. The possibility of application of sewage sludge is essentially determined by the composition of the sludge. The goal of the experiment was to demonstrate that the physiological, morphological, and biochemical parameters of maize (Zea mays L. cv. Armagnac) linearly change with increasing concentrations of sewage sludge (25%, 50%, and 75% as m/m%). The experiment was set up in a glasshouse. The following parameters were investigated: plant height, relative chlorophyll content, photosynthetic pigments (chlorophyll-a, chlorophyll-b, carotenoids), and leaf proline and malondialdehyde (MDA) content, and PS II quantum efficiency in the 3-leaf stages of the plants. Sewage sludge applied in lower doses had a beneficial effect on the initial growth of maize. The relative chlorophyll content was significantly higher in all treatments compared to the control. There was no significant difference in the maximum quantum efficiency of PS II reaction centers among the treatments. In this experiment, different concentrations of sewage sludge treatments had different impacts on the MDA and proline content of maize leaves. The proline content was significantly higher in all treatments, while the MDA content did not change significantly compared to the control.

References
  1. Belmeskine H.–Ouameur W.A.–Dilmi N.–Aouabed A. (2020): The vermicomposting for agricultural valorization of sludge from Algerian wastewater treatment plant: impact on growth of snap bean Phaseolus vulgaris L. Heliyon 6, e04679 https://doi.org/10.1016/j.heliyon.2020.e04679
  2. Burducea, M.–Lobiuc, A.–Asandulesa, M.–Zaltariov, M.F.–Burducea, I.–Popescu, S.M.–Zheljazkov, V.D. (2019): Effects of Sewage Sludge Amendments on the Growth and Physiology of Sweet Basil. Agronomy 9(9), 548; https://doi.org/10.3390/agronomy9090548
  3. Buta, M.–Hubeny, J.–Zieliński, W.–Harnisz, M.–Korzeniewska, E. (2021): Sewage sludge in agriculture – the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops – a review. Ecotoxicology and Environmental Safety. Volume 214, 112070. https://doi.org/10.1016/j.ecoenv.2021.112070
  4. Carillo, P.–Gibon, Y. (2011) Extraction and Determination of Proline. PrometheusWiki
  5. Du, F.–Shi, H.–Zhang, X.–Xu, X. (2014): Responses of reactive oxygen scavenging enzymes and malondialdehyde to water deficits among six secondary successional seral species in loess plateau. LPoS ONE 9 (6). e98872. https://doi.org/10.1371/journal.pone.0098872
  6. Ekane, N.–Barquet, K.–Rosemarin, A. (2021): Resources and Risks: Perceptions on the Application of Sewage Sludge on Agricultural Land in Sweden, a Case Study. Front. Sustain. Food Syst. 5:647780 https://doi.org/10.3389/fsufs.2021.647780
  7. Elloumi, A.–Makhlouf, M.–Elleuchi, A.–Bradai C. (2016): The potential of deinking paper sludge for recycled HDPE reinforcement. Polymer Composites, 39(3), 616–623. https://doi.org/10.1002/pc.23975
  8. Fedeli, R.–Celletti, S.–Loppi, S.–Vannini, A. (2023): Comparison of the Effect of Solid and Liquid Digestate on the Growth of Lettuce (Lactuca sativa L.) Plants. Agronomy 13(3), 782. https://doi.org/10.3390/agronomy13030782
  9. Fracheboud, Y. (2006): Using chlorophyll fluorescence to study photosynthesis. Institute of Plant Sciences ETH, Universitatstrass.
  10. Hayat, S.–Hayat, Q.–Alyemeni, M.N.–Wani, A.S.–Pichtel, J.–Ahmad, A. (2012): Role of proline under changing environments. Plant Signal Behav. 7(11): 1456–1466. https://doi.org/10.4161/psb.21949
  11. Heath, R.L.–Packer, L. (1968): Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125. 189–198. https://doi.org/10.1016/0003-9861(68)90654-1
  12. Kádár, I.–Morvai, B. (2007.): Ipari-kommunális szennyvíziszap-terhelés hatásának vizsgálata tenyészedény-kísérletben. Agrokémia és Talajtan 56/2. pp. 333–352. https://doi.org/10.1556/agrokem.56.2007.2.10
  13. Lamastra, L.–Suciu, N.A.–Trevisan, M. (2018): Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer. Chemical and Biological Technologies in Agriculture volume 5, Article number: 10
  14. Li, S.–Fang, B.–Wang, D.–Wang, X.–Xiaobing, M.–Xuan, Z. (2019): Leaching Characteristics of Heavy Metals and Plant Nutrients in the Sewage Sludge Immobilized by Composite Phosphorus-Bearing Materials. Int J Environ Res Public Health. 16(24): 5159. https://doi.org/10.3390/ijerph16245159
  15. Lobo, T.F.–Grassi Filho, H.G. (2009): Sewage sludge levels on the development and nutrition of sunflower plants. J. Soil. Sci. Plant Nutr. 9(3): 245–255. http://dx.doi.org/10.4067/S0718-27912009000300007
  16. Moran, R.–Porath, D. (1980.): Chlorophyll Determination in intact tissues using N, N-dimethylformamide. Plant Physiology. 65. 478–479. https://doi.org/10.1104/pp.65.3.478
  17. Ozden, M.–Demirel, U.–Kahraman, A. (2009) Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci Hortic 119: 163–168. https://doi.org/10.1016/j.scienta.2008.07.031
  18. Petersen, S.O.–Henrikse, K.–Mortensen, G.K.–Krogh, P.H.–Brandt, K.K.–Sorensen, J.–Madsen, T.–Petersen, J.–Grøn, C. (2003): Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil & Tillage Research 72, 139–152. https://doi.org/10.1016/S0167-1987(03)00084-9
  19. Prakash, A.J.–Saha, B.–Chowardhara, B.–Devi, S.S.–Borgohain, P.–Panda, S.K. (2018): Qualitative Analysis of Lipid Peroxidation in Plants under Multiple Stress Through Schiff’s Reagent: A Histochemical Approach. Bio Protoc. 8(8): e2807. DOI:10.21769/BioProtoc.2807
  20. Singh, A.–Agrawal, M. (2008.): Acid Rain and Its Ecological Consequences. Journal of Environmental Biology, 29, 15–24
  21. Singh, R.P.–Agrawal, M. (2010) Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecological Engineering Volume 36, Issue 7, July 2010, pp. 969–972. https://doi.org/10.1016/j.ecoleng.2010.03.008
  22. Singh, S.–Sinha, S. (2005): Accumulation of metals and its effects in Brassica Juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf 62:118–127. https://doi.org/10.1016/j.ecoenv.2004.12.026
  23. Speir, T.W.–Van Schaik, A.P.–Percival, H.J.–Close, M.E.–Pang, L. (2003): Heavy Metals in Soil, Plants and Groundwater Following High-Rate Sewage Sludge Application to Land. Water, Air, and Soil Pollution volume 150, pages 319–358.
  24. Spormann, S.–Nadais, P.–Sousa, F.–Pinto, M.–Martins, M.–Sousa, B.–Fidalgo, F.–Soares, C. (2022): Accumulation of proline in plants under contaminated soils – are we on the same page? Antioxidants 12 (3): 666. https://doi.org/10.3390/antiox12030666
  25. Solanki, P.–Akula, B.–Reddy, J.–Sharma, H. K. (2016): Effect of sewage sludge on growth and yield of golden rod (Solidago species). International Journal of Applied and Pure Science and Agriculture 2, 8, 81–85.
  26. Thomas, C.N.–Bauerle, W.L.–Chastain, J.P.–Owino, T.O.–Moore, K.P.–Klaine, S.J. (2006): Effects of scrubber by-product-stabilized dairy lagoon sludge on growth and physiological responses of sunflower (Helianthus annuus L.). Chemosphere, Volume 64, Issue 1, June 2006, Pages 152–160. https://doi.org/10.1016/j.chemosphere.2005.10.039
  27. Tóth, B.–Moloi, M. (2019): The use of industrial waste materials for alleviation of iron deficiency in sunflower and maize. Int J Recycl Org Waste Agricult. 8. 145–151.
  28. Wellburn, R.A.: (1994): The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. Journal of Plant Physiology. 144. 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2
  29. Yilmaz, D.D.–Temizgül, A. (2012): Effects of Municipal Sewage Sludge Doses on the Chlorophyll Contents and Heavy Metal Concentration of Sugar Beet (Beta vulgaris var. sacchariferous). Bioremediation Journal Volume 16, 2012 - Issue 3, pp.131–140. https://doi.org/10.1080/10889868.2012.687412
  30. /2008. (II. 26.) Korm. Rendelet a szennyvizek és szennyvíziszapok mezőgazdasági felhasználásának és kezelésének szabályairól szóló 50/2001. (IV. 3.) Korm. rendelet módosításáról szóló kormányrendelet