Articles

Microgreen leaf vegetable production by different wavelengths

Published:
2022-05-26
Authors
View
Keywords
License

Copyright (c) 2022 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Kovácsné Madar, Ágota, Vargas-Rubóczki, T., & Takácsné Hájos, M. (2022). Microgreen leaf vegetable production by different wavelengths. Acta Agraria Debreceniensis, 1, 79-84. https://doi.org/10.34101/actaagrar/1/10449
Received 2021-12-15
Accepted 2022-04-21
Published 2022-05-26
Abstract

Microgreens are becoming more popular in gastronomy, especially as a salad ingredient. In this study, two plant species belonging to the cabbage family were grown as microgreens, namely red cabbage and broccoli. Three different light-emitting diodes (LEDs) were used in the experiment, blue, red, and combined (blue:red) lighting. The experiment was carried out by 118 µmol-2 s-1total Photosynthetic Photon Flux (PPF), LED lighting was applied for 16 hours a day. Blue light primarily stimulates leaf growth, while red light promotes flowering. In our experiment, blue and combined lighting favorably affected plant development, yield (~3000 g m-2), chlorophyll-a (~8.0 mg g-1), and carotenoid content (9.0 mg g-1). However, the red light resulted in reduced harvest yields (~2200 g m-2), chlorophyll-a (~6.0 mg g-1), and carotenoid content (~7.0 mg g-1). The development of red cabbage was favorably influenced by the blue spectrum, while the combined spectrum favorably influenced the development of broccoli.

References
  1. Brazaitytė, A.–Miliauskienė, J.–Vaštakaitė-Kairienė, V.–Sutulienė, R.–Laužikė, K.–Duchovskis, P.–Małek, S. (2021): Effect of Different Ratios of Blue and Red LED Light on Brassicaceae Microgreens under a Controlled Environment. Plants, 10(4), 801.
  2. Brazaitytė, A.–Viršilė, A.–Samuolienė, G.–Jankauskienė, J.–Sakalauskienė, S.–Sirtautas, R.–Novičkovas, A.–Dabašinskas, L.–Vaštakaite V.–Miliauskienė, J.–Duchovskis, P. (2016): Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions. In VIII International Symposium on Light in Horticulture 1134 pp. 277–284.
  3. Bulgari, R.–Baldi, A.–Ferrante, A.–Lenzi, A. (2017). Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. New Zealand Journal of Crop and Horticultural Science, 45(2), 119–129. doi:10.1080/01140671.2016.1259642
  4. Cope, K.R.–Snowden, M.C.–Bugbee, B. (2014): Photobiological interactions of blue light and photosynthetic photon flux: Effects of monochromatic and broad‐spectrum light sources. Photochemistry and photobiology, 90(3), 574–584 doi:10.1111/php.12233
  5. Di Gioia, F.–Petropoulos, S.A.–Ozores-Hampton, M.–Morgan, K.–Rosskopf, E.N. (2019): Zinc and iron agronomic biofortification of Brassicaceae microgreens. Agronomy, 9(11), 677. doi:10.3390/agronomy9110677
  6. Kowitcharoen, L.–Phornvillay, S.–Lekkham, P.–Pongprasert, N.–Srilaong, V. (2021): Bioactive Composition and Nutritional Profile of Microgreens Cultivated in Thailand. Applied Sciences, 11(17), 7981. doi:10.3390/app11177981
  7. Le, T.N.–Chiu, C.H.–Hsieh, P.C. (2020): Bioactive compounds and bioactivities of Brassica oleracea L. var. italica sprouts and microgreens: An updated overview from a nutraceutical perspective. Plants, 9(8), 946. doi:10.3390/plants9080946
  8. Li, Y.–Xin, G.–Wei, M.–Shi, Q.–Yang, F.–Wang, X. (2017): Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Scientia Horticulturae, 225, 490–497. doi:10.1016/j.scienta.2017.07.053
  9. Moran, R.–Porath, D. (1980): Chlorophyll determination in intact tissues using N, N-dimethylformamide. Plant Physiology, 65(3), 478–479.
  10. Mir, S.A.–Shah, M.A.–Mir, M.M. (2017): Microgreens: Production, shelf life, and bioactive components. Critical reviews in food science and nutrition, 57(12), 2730–2736. doi:10.1080/10408398.2016.1144557
  11. Palmitessa, O.D.–Renna, M.–Crupi, P.–Lovece, A.–Corbo, F.–Santamaria, P. (2020): Yield and quality characteristics of Brassica microgreens as affected by the NH4: NO3 molar ratio and strength of the nutrient solution. Foods, 9(5), 677. doi:10.3390/foods9050677
  12. Paradiso, V.M.–Castellino, M.–Renna, M.–Leoni, B.–Caponio, F.–Santamaria, P. (2018a): Simple tools for monitoring chlorophyll in broccoli raab and radish microgreens on their growing medium during cold storage. Prog. Nutr, 20, 1–8. doi:10.23751/pn.v20i3.7097
  13. Paradiso, V.M.–Castellino, M.–Renna, M.–Gattullo, C. E.–Calasso, M.–Terzano, R.–Allegretta, I.–Leoni, B.–Caponio, F.–Santamaria, P. (2018b): Nutritional characterization and shelf-life of packaged microgreens. Food & function, 9(11), 5629–5640. doi:10.1039/c8fo01182f
  14. Renna, M.–Di Gioia, F.–Leoni, B.–Mininni, C.–Santamaria, P. (2017): Culinary assessment of self-produced microgreens as basic ingredients in sweet and savory dishes. Journal of
  15. culinary science & technology, 15(2), 126–142. doi:10.1080/15428052.2016.1225534
  16. Su, N.–Wu, Q.–Shen, Z.–Xia, K.–Cui, J. (2013): Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings. Plant Growth Regulation, 73 (3), 227–235. doi:10.1007/s10725-013-9883-7
  17. Toscano, S.–Cavallaro, V.–Ferrante, A.–Romano, D.–Patané, C. (2021): Effects of different light spectra on final biomass production and nutritional quality of two microgreens. Plants, 10(8), 1584. doi:10.3390/plants10081584
  18. Turner, E.R.–Luo, Y.–Buchanan, R.L. (2020): Microgreen nutrition, food safety, and shelf life: A review. Journal of food science, 85(4), 870–882. doi:10.1111/1750-3841.15049
  19. Vaštakaitė, V.–Viršilė, A. (2015): Light-emitting diodes (LEDs) for higher nutritional quality of Brassicaceae microgreens. In Annual 21st International Scientific Conference:" Research for Rural Development" Volume 1, Jelgava, Latvia, 13–15 May 2015. Latvia University of Agriculture. pp. 111–117.
  20. Widiwurjani,–Guniart,–Sari, N.K.–Andansari, P. (2020): Microgreen Quality of Broccoli Plants (Brassica oleracea L.) and Correlation between Parameters. In Journal of Physics: Conference Series Vol. 1569, No. 4, p. 042093. doi:10.1088/1742-6596/1569/4/042093
  21. Xiao, Z.–Lester, G.E.–Luo, Y.–Wang, Q. (2012): Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of agricultural and Food Chemistry, 60(31), 7644-7651. doi:10.1021/jf300459b
  22. Ying, Q.–Jones-Baumgardt, C.–Zheng, Y.–Bozzo, G. (2021): The Proportion of blue light from light-emitting diodes alters microgreen phytochemical profiles in a species-specific manner. HortScience, 56(1), 13-20. doi:10.21273/HORTSCI15371-20
  23. Zielewicz, W.–Wróbel, B.–Niedbała, G. (2020): Quantification of chlorophyll and carotene pigments content in mountain melick (Melica nutans L.) in relation to edaphic variables. Forests, 11(11), 1197. doi:10.3390/f11111197