Search
Search Results
-
Cooling irrigation as a powerful method for microclimate modification in apple plantation
33-37.Views:286Irrigation in some countries is a horticultural practice mainly used only to supply water. At the same time the use of microsprinklers have a powerful influence on the changes of temperature in orchards. When the air’s temperature is high (about 20 °C or higher) the evaporative cooling irrigation significantly decreases the plants’ surface temperature and air temperature. The cooling effect is stronger when the air is dryer. By using cooling irrigation regularly, canopy temperature can be decreased so that the beginning of blooming can be delayed. Also if the blooming is early and frost probability is high, serious damages can happen in orchards. The beneficial effect of cooling irrigation is the temperature reduction and frost protection. InMarch 2010, one month earlier than the expected blooming an irrigation system was established to produce anti-frost treatment and regulate the micro-climate of a Gala apple orchard which belongs to the University of Debrecen (Hungary). The objective of sprinklers was to cool the air by increasing water evaporation and relative humidity. The position of the micro-sprinklers was planned in three levels (around the tree trunks, a few cm near to the soil surface, in the crown region and above the crown, a half meter higher). The results showed that the water sprayed in the orchard by micro-jets influenced decisively the temperature of the plantation. At higher temperatures (around 20 °C), the drop of temperature may attain 5–7 °C. A low relative humidity of the air may increase the relative effect. When water was applied at intervals of 15 minutes for ten times a day from 8 am to 18 pm, the air, flowers and bud’s surface temperature could be kept low.At certain days when the temperature was higher than 10 °C, irrigation was used at night time in similar 15 minutes intervals, from 18 pm and 6 am. The beginning of bloom could be delayed for more than ten days. The Gala apple variety blooming dynamics was characterized by a logistic curve in the treated as well as in the control plot. In the treated plot, the curve was steeper than in the control one in spite of the equal temperatures measured in the plots. Under Hungarian climatic conditions, the method was successfully used to delay blooming dates. The main result was the diminution of the frost damage in the spring that assured apple yields.
-
Effect of over tree cooling irrigation on ‘Bosc’ pear orchards microclimate
153-156.Views:382Irrigation in some countries is a horticultural practice mainly used only to supply water. At the same time the use of microsprinklers have a powerful infl uence on the changes of temperature in orchards. When the air’s temperature is high (about 20 °C or higher) the evaporative cooling irrigation signifi cantly decreases the plants’ surface temperature and air temperature. The cooling effect is stronger when the air is dryer. By using cooling irrigation regularly, canopy temperature can be decreased so that the beginning of blooming can be delayed. Also if the blooming is early and frost probability is high, serious damages can happen in orchards. The benefi cial effect of cooling irrigation is the temperature reduction and frost protection. In March 2010, one month earlier than the expected blooming an irrigation system was established to produce anti-frost treatment and regulate the micro-climate of a Bosc pear orchard which belongs to the University of Debrecen (Hungary). The objective of sprinklers was to cool the air by increasing water evaporation and relative humidity. The position of the micro-sprinklers was planned in three levels (around the tree trunks, a few cm near to the soil surface, in the crown region and above the crown, a half meter higher). The results showed that the water sprayed in the orchard by micro-jets infl uenced decisively the temperature of the plantation. At higher temperatures (around 20 °C), the drop of temperature may attain 5–7 °C. A low relative humidity of the air may increase the relative effect. When water was applied at intervals of 15 minutes for ten times a day from 8 am to 18 pm, the air, fl owers and bud’s surface temperature could be kept low. At certain days when the temperature was higher than 10 °C, irrigation was used at night time in similar 15 minutes intervals, from 18 pm and 6 am. The beginning of bloom could be delayed for more than ten days. The Bosc pear variety blooming dynamics was characterized by a logistic curve in the treated as well as in the control plot. In the treated plot, the curve was steeper than in the control one in spite of the equal temperatures measured in the plots. Under Hungarian climatic conditions, the method was successfully used to delay blooming dates. The main result was the diminution of the frost damage in the spring that assured pears yields.
-
Effects of excessive weather on the micro-climate of apple plantations under the hail protection nets
81-85.Views:344The general utilisation of hail nets is spreading all over the world and in Hungary too. Hail nets are at present the only tool, which
is able to prevent heavy hail damage in agricultural crops. Besides its numerous advantages, there are also deleterious side effects, e.g. it
changes the microclimate of the crop stand. Our study aimed to observe the differences, which characterise the physical status of crop stands
under the protection of hail nets compared with the stands in open air under various meteorological conditions: high or low temperature, calm
or windy atmosphere and their possible combinations. The results indicated that on hot and calm days the difference may attain 3–4° C. On
cool summer days, the difference was only 1.5 ºC. The hail net influences the relative humidity of the air, which means on ho summer days
often 7-8% differences. Conditions of radiation may also differ conspicuously. Measurements prove the reduced global radiation on sunny
summer days to 70%. This impairs as a rule the development of fruits reducing their quality and also its quantitative traits. Sunburn is, on the
other hand, significantly prevented by shadow. -
Technologies developed to avoid frost damages caused by late frost during bloom in the fruit growing regions of Siófok and Debrecen
99-105.Views:404The aim of the study was to fi nd out which of the methods used to avoid damages of late frosts would be the most effective for the fruit growing practice. Three technologies have been tested in the regions of Siófok and Debrecen-Pallag. The antifrost irrigation proved to be the most advantageous. For that purpose microjet sprayers are used, which are thrifty and do not need for that purpose large containers. With the aim to secure an even distribution of water, the sprayers are distributed on three levels: above and inside of the crown as well as on the level of trunks. On a large scale, a single microjet above the crown level would be suffi cient. By means of a detailed analysis served to set the optimum intervals between spraying phases: with each 15, 10, 5 and 3 minutes during half a minute. The synchronous presence of water and ice below the freezing point, the released freezing heat plus the water used much above the freezing point (9–10 °C) altogether maintains the temperature above around 0°C near the fl owers or growing fruitlets, meanwhile, the surrounding air cools down to –8 °C. The effectiveness of the generally used anti-frost would be increased substantially by the former application of cooling irrigation, which delays the blooming date. The Frostbuster represents a new technology developed for the same purpose of frost defence. It uses butane burning and produces high (80-90°C) temperature with a strong blast of air. On the protected area sensors have been distributed for measuring temperature and relative humidity. The means of the measurements proved a rise of temperature, which was suffi cient to save the fruit trees until the difference is less than –3–3.5 °C. Our analyses stated that paraffi n candles avert the frost until –4 °C. Its success depends largely on the intensity of air movements. A small wind would be enough to frustrate the effect. The results show clearly the utility of Frostbuster and paraffi n candle combined is approved.
-
Path coefficient analysis of environmental factors influencing flight activity of Apis florea F. and seed yield in carrot (Daucus carota L.)
87-92.Views:138Foraging ecology of insect pollinators visiting carrot flowers (Daucus carota L.) was studied in relation to five environmental variables. The dwarf honeybee, Apis florea L., was the most abundant flower visitors and comprised more than 94% of the total flower visiting insects. Commencement of flight activity occurred when a minimum threshold of environmental variables was surpassed while the cessation was governed mainly by decline in values of light intensity and radiation. In between the commencement and cessation, the foraging population correlated significantly and positively with air temperature, light intensity, solar radiation and nectar-sugar concentration and negatively with relative humidity. Path coefficient analysis, however, revealed that direct effect of temperature was high and positive followed by light intensity and solar radiation while the direct effect of relative humidity was high and negative. The direct effect of nectar-sugar concentration was negative and negligible. Evidently, path coefficient analysis gave a more clear picture of effects than did the simple correlation analysis. Apis florea on an average visited 1.14+0.23 and 22.78+2.57 umbels and flowers/min, respectively during different hours of the day. Furthermore, the insect pollinated plots produced significantly more seeds with heavier weights than those isolated from insect visits.
-
The effect of cooling irrigation on the blooming dynamic of plum
57-59.Views:310The objective of the present study is to explore the effect of cooling irrigation (aspersion) on the beginning of bloom and on the micro-climate of the plantation. The results show that the water sprayed in the orchard by micro-jet influenced decisively the temperature of the plantation. At higher temperatures (around 20 °C), the drop of temperature may attain 5–7 °C. A low relative humidity of the air may increase the relative effect, The frequent repetition (20 minute intervals) may keep the temperature low also in the buds. The beginning of bloom may delayed for more than ten days. The dynamics of blooming was characterised by a logistic curve in the treated as well as in the control plot. In the treated plot, the curve was steeper than in the control in spite of equal temperatures measured in the plots. Under our (Hungarian) climatic conditions, the method is successfully used to delay blooming dates. The main result is the diminution of the frost damage in the spring and the security of yield. The costs and water requirement should be calculated later.
-
The atmospherical drought as a decisive factor of yield in the main sour cherry varieties of Hungary
121-125.Views:253Atmospheric drought causes heavy diffi culties of water supply in most fruit species grown in Hungary, although the modern, intensive plantations are already equipped with irrigation. The use a dripping systems are widely applied, therefore nothing was done to avert the risk of atmospheric drought. In excessively dry seasons the reduction of yields is often due to atmospheric drought. Present study aims to utilise measured data of meteorological parameters (relative air humidity and temperature) to develop an index to characterise drought and measure its effect on fruit yield. Causes influencing yields are multiple. Phytosanitary problems are combined with defi cits of water supply. Water deficit of the soil is avoided by dripping irrigation, but the atmosphere is infl uenced by sprinklers only. Atmospherical drought increases the transpiration of the trees intensely and causes reduction of photosynthetic activity, consequently impairs the yield. Applying the index developed in a plantation of 6 sour cherry varieties grown in Hungary (Meteor, Nefris, Pándy, Újfehértói fürtös, Kántorjánosi, Debreceni bôtermô), we measured the specific yields (yield per volume of tree crown) during the period 1989–2011 using the meteorological database of the growing site. Additionally, other parameters characterising the drought are compared and searched for a method most reliable for judging the specific yielding capacity of sour cherry varieties. The results proved convincingly the utility of the index, especially for the varieties Pándy and Újfehértói fürtös. Comparison with other indices expressing the effects of drought revealed the superiority of our index, which will be applied in the future to express the risk of atmospheric drought.
-
A model of full bloom starting date of some white Vitis vinifera L. varieties grown in Helvecia
21-25.Views:182Grapevine bloom happens between end of May and the middle of June in Hungary. However, climate change in the past decades and the occurring weather anomalies can modi fy this date to a diverse degree. Among the weather factors, the bloom starting dates of grapevine depend mostly on temperature and relative humidity of air. There can be significant differences between North American and East Asian grapevine varieties, and of course, the early and late ripening varieties. ln this approach we investigated the starting dates of bloom between 2000 and 2004 for grapevine varieties grown in Helvecia, as well as the effectiveness of a temperature sum model. The model is based on the widely accepted cumulated heat sum concept, and the optimization was made for the least standard deviation in days as well as on the least average absolute deviation in days and on the least maximum deviation in days. The model is connected directly to a similar model for the budburst date of the same plantings (Hlaszny & ladanyi, 2009). We set the optimum lower base temperature to I 0.45 °C and the upper base temperature to 26 °C. The absolute values of the differences between the observations and the model estimations move between one and six days with an average of 1.81 days