Search
Search Results
-
Studies on the essential oil of different fennel (Foeniculum vulgare Mill.) populations during onthogeny
27-30.Views:228In the recent studies two Foeniculum vulgare Mill. populations (Hungarian and Korean) had been studied in open field trials in 1997-98 in Budapest for the identification of their essential oil characteristics. The essential oil accumulation level as well as the composition of the oil were studied during ontogenesis and at 6 phases of the umbel development from budding to overripening.
In the vegetative phases, the accumulation level of the essential oil was higher in the Hungarian genotype. In the leaf rosette stage, anethole is the main compound in both genotypes (40-96%), except the root of the Korean populations which contains 54% dillapiol. The accumulation level of anethole is slightly decreasing, while dillapiol is slightly increasing during the ontogeny. a- and [3-pinenes are characteristic compounds of the leaves, especially in the Korean genotype (10-11%). Before seed setting, fenchone was present in a considerable amount (7.5%) only in the umbels of the Hungarian genotype.
During the generative development, the maximum values of essential oil content are reached at the milky fruit stage (10,11%) in the Hungarian. and at the green fruit stage (7.1% ) in the Korean type, while the composition of the essential oil changed only slightly. The ratio of fenchone is increasing after flowering and being stable during ripening. Anethole varies to a smaller extent in the umbels, only.
We proved, that the dinamics of essential oil accumulation and the oil composition may vary according to genotype. Based on our results, the Korean population is characterized in the system of Bernáth et al. (2) as a high anethol-low methyl chavicol chemoform of the anethol chemovariety (fenchone<15%; anethole>68%; methyl chavicol< 3,2%).
-
Volatile constituents of Nepeta cataria L., N. glechoma Benth. and N. parviflora M. Bieb. from Hungary
47-50.Views:129In the temperate zone live about 150 species of the Nepeta genus. Our investigations covered the examinations of the volatile oil containing species of the genus endemic in Hungary, Nepeta cataria and Nepeta parviflora. Latter is a relict of the ancient steppe-flora and endemic in Hungary as well. Phytochemical examination of the volatile oil containing plant material has also been carried out. Catnip growing in the Botanical Garden of PTE Department of Botany contained 0,67% volatile oil in May and 0,14% in November. Chemical character of the volatile oils were measured by gas chromatography/mass spectrometry and citronellol, citral-A, citral-B and geraniol components were identified. The composition of the oil of November samples shifted towards citronellol (65%). In both samples insecticide and repellent activity bearing compounds (+)-cis-p-menthane-3,8-diol, and (—)-trans-p-menthane-3,8-diol in 2-2.5 and 4-4.5% amount have been found. The catnip sample deriving from Germany contained a small amount of anetol, citronellol, neral, geraniol and geranial (6-13%), and possibly two isomers of nepetalactone in 23-31%.
The Nepeta parviflora endemic in the Nagyvolgy valley near Nagykaracsony consisted of the same compounds in the investigated years (1998-2000). Its limonene, methyl chavicol, b-cariophyllene, b-selinene, b-cubebene, davanone, germacrene-D constituents have been identified. In the year 2000 different GC % of these compounds were detected in the different organs of the plants.
The closely related species Nepeta cataria var. citriodora contained 83% citral, and the N. glechoma (= Glechoma hederacea) contained 41% a-cubebene, 20% patchoulenol, 7,7% spathulenol respectively. These compounds were identified by gas chromatography and gas chromatography / mass spectrometry.