Search

Morphological and phenological properties of sour cherry varieties grown in Hungary and their inter-incompatibility relations
114-117.

Regular observations and experiments were performed during a 14 year period on 6 sour cherry varieties. The morphological traits of leaves and fruits were compared, and the phenology of blooming as well as of ripening dates served to start an estimation of the possibilities of mutual pollination and the planning of harvest operations. Experiments involved obligate autogamy, artificially controlled allogamy and open pollination in order to reveal self-fertility, self-sterility or inter-incompatibility relations.

The varietal characters represent, each, different values in the distinction of the items, because of their intra-varietal variability. From that point of view, the most reliable are the data of blooming and ripening time, fruit size and the fertility relations.

Inter-incompatibility was observed between the group of self-fertile, "Pándy type" varieties (`Újfehértói fürtös’, ‘Debreceni bőtermő’, ‘Kántorjánosi’) on one side and the selection of Pándy 7', a self-sterile variety on the other side. Unilateral incompatibility has been detected within the former group of new, self-fertile varieties, the combinations: (`Újfehértói fürtös’ x ‘Debreceni bőtermő’ as well as `Újfehértói fürtös’ x Kántorjánosi’.

Our results prove the close kinship between those three new varieties and the original Pándy variety on the base of being highly similar in their morphology and also of the fact of their inter-incompatibility, though unilateral.

 

121
154
Self-incompatibility in plums (Prunus salicina Lindl., Prunus cerasifera Ehrh. and Prunus domestica L.). A minireview
137-140.

Japanese plums (P salicina) and cherry plums (P cerasifera) are diploid species, while European plum (P. domestica) cultivars are hexaploids. Most diploid species are self-incompatible while fertility relations of the hexaploid European plums are variable between self-incompatibility and self-compatibility. About twenty S-alleles and six inter-incompatibility groups and one S-haplotype responsible for the self-fruitful phenotype were described in Japanese plum cultivars, but studies on cherry plums and even on the European plum cultivars are severely restricted. This review is focused on the available information obtained from myrobalans and European plums; and discusses recent hypotheses regarding the putative origin of the hexaploid plums, and thereby indicates the possibility of allele flow between different plum species.

336
356
Bee pollination and association of apricot varieties
20-24.

Apricot yields are highly variable according to the season. The variation is caused mainly by the adversities during the critical processes of floral biology, i.e. blooming and fertilisation. On the basis of information concerning blooming time and mutual compatibility relations of apricot varieties a system of securing regular and adequate yields has been developed.

Winter frosts of the continental type are well tolerated by most of the apricots, however, after the end of rest period, flower buds are loosing frost tolerance, 'rapidly.

Being one of the fruit species blooming earliest during the early spring, apricot start to bloom in Hungary around the end of March or early April as a mean of many years, but it also happened, exceptionally that apricot started to bloom at February 20 (at Letenye South Hungary). The early season, exposes the floral organs to frost injuries. As a consequence, apricot orchards on the Great Plain produce low yields in 3 years, intermediate yields in other 3 years out of a ten-year-period.

Moreover, weather conditions during the blooming period are often unfavourable for pollination. Cool, windy and rainy weather prevents the flight of insects and on the other hand, warm spells shorten the blooming process, nectarines and stigmata get dry and the female gametes loose viability before effective pollination occurres.

The fertility of individual cultivars are meeting different obstacles. Apricot cultivars differ greatly in the rate of flowers bearing underdeveloped pistils, which may attain even 60% (e.g. Orangered). New commercial cultivars are often self-incompatible. Local varieties of that type in Hungary are the „óriás" varieties (e.g. Ceglédi óriás, Szegedi mammut), and the new hybrid Ceglédi Piroska. Many of the cultivars are variable in their self-fertility (partially self-fertile): Budapest, Harmat, Korai piros, Mandulakajszi.

Inter-incompatibility is also known in apricots. The „óriás " varieties do not fertilise each other. During the growth of fruits, cool spells (2-4 °C) caused severe fruit shed in Ceglédi óriás.

Apricot flowers produce pollen and nectar at average rates related to other fruit species, thus bees are attracted sufficiently. Bee visits are very variable according to growing site and season. Most of the bees are pollen gatherers but sometimes nectar suckers are in majority. Bee pollination is necessary not only for the self-incompatible varieties but also to enhance the yield of self-fertile varieties.

Taking the blooming and fertility relations of the cultivars into account, plantations should not exceed two rows to a particular self-incompatible varieties, and possibly two different polliniser varieties are suggested to be planted as flanking the block in question.

In commercial plantations 2 to 4 bee colonies per hectare are proposed to move for the whole blooming period.

 

148
179
Association of varieties in stone fruit plantations
29-33.

In the majority of Hungarian orchards of stone fruits, the planting distance is 6-7 m x 4-5 m. As many of the current varieties are self-incompatible, planting designs are applied to provide for adequate pollinisers. As long as differences in blooming time are small, i.e. 3-5 days at most, overlaps of blooming of the associated varieties are sufficient for fruit set.

In sour cherry, one leading variety, Pándy, is self-incompatible and requires two polliniser varieties at least (Ciganyneggy or some sweet cherry varieties). Pándy is, moreover, cross-incompatible with the varieties Debreceni bőtermő, Kántorjánosi and Újfehértói fürtös being all of them self-fertile as most of new varieties recommended, by the way, for being planted to monovarietal blocks.

Among European plums there are varieties registered as male sterile, self-incompatible, parially self-fertile and self-fertile, respectively. For the purpose of cross pollination, the choice of two varieties, at least, to be associated to any variety belonging to the first three groups, is recommended. The number of rows in blocks planted to self incompatible or male-sterile varieties should not be higher than 2-(4). Inter-incompatibility has been observed within the currently recommended assortment, between the varieties Cacanska najbolja and Stanley, only. Chinese-Japanese plums are scarcely represented in Hungarian plantations. Variation of blooming time in varieties is somewhat more pronounced, i.e. 5-8 days. There is but a weak tendency to self-fertility, thus practically, all varieties are considered as self-incompatible, thus the planting of two-row blocks for each of three varieties, at least, are recommended to be associated.

Self-incompatibility and partially self-fertile apricot varieties are recommended to be combined with two polliniser varieties, at least, each planted to two-row blocks. The varieties Ceglédi óriás, Ligeti óriás, Nagykőrösi óriás and Szegedi Mammut are mutually inter-incompatible. Most of the peach varieties grown in Hungary are self-fertile, thus they are planted to large blocks, each. On sites threatened by late spring frost, it is recommended to plant (monovarietal) blocks of 4-6 rows at most. Cross-pollination may increase fruit set even in self-fertile varieties.

 

141
182
Effect of the placement of self-incompatible apricot varieties on their yield in commercial plantations
82-86.

Earlier studies concerning self-, free- and cross- fertilization of apricot varieties grown in Hungary, proved the existence of self-sterile as well as self-fertile varieties within the recommended assortment. The self-sterile and partially self-fertile varieties should be planted in association with polliniser varieties, only. The present paper reports about the yields of trees of the widely grown, self-sterile local variety, Ceglédi óriás (Giant of Cegléd), depending on the distance of adequate polliniser trees. In the univarietal, 27 row-wide block of the relevant variety, an efficient polliniser, Magyar kajszi was planted to the 10th and 19th row. In the close vicinity, another block of polliniser, Rózsakajszi C. 320 was located. The number of fruits set per tree has been counted or estimated in two consecutive years. In both seasons, the yield of the Ceglédi óriás trees diminished with the growing distance from the nearest polliniser trees. Those trees in the center of the block, between the two (10th and 19th) rows of Magyar kajszi bore acceptable yield (40 kg/tree in 1987), however, considerable reduction of the number of the fruits set was stated already in the 4-5th row from the polliniser away. Similar gradient of fruit set was apparent in relation to the neighbouring block of Rózsakajszi C 320. The beneficial effect of the vicinity of polliniser varieties was obvious as far as the distance of the 10th row. Taking into consideration the self-sterility, the early blooming time and the poor fertilization of the variety Ceglédi óriás, a planting design of associating it with at least two polliniser varieties (e.g. Gönci magyar kajszi and Ceglédi bíbor) is highly recommended. On the basis also of earlier results, a proposal has been developed for the association of apricot varieties as recommendations for optimising yields. Blooming time, fertilizing potential, schedule of the picking season and market possibilities have to be considered simultaneously.

111
147
Inter-incompatibility of self- incompatible apricots and their varietal properties
79-81.

There are four apricot varieties grown in Hungary derived from local selections known to bear fruits of giant (60 - 100 g) size: Ceglédi óriás, Nagykőrösi óriás, Szegedi mammut and Ligeti óriás. Being morphologically similar, they seem to be closely related to each other. The detailed study of the morphology (of leaves and fruits) and phenology (of blooming and ripening dates) as well as the fertility relations was aimed to find out the degree of kinship between the varieties in question.

It was stated that the value of morphological traits is variable from the taxonomic point of view. The most important signs of common origin were the time of blooming and the leaf size. Less valuable are the date of m:iurity and the size of fruit because of their variability. In the literature Satin') & Nyeki (1991) published the first proof of inter-incompatible relation between apricot varieties. This should be considered as an argument of close genetic relation between those "giant" varieties of apricots.

The first three varieties. Ceglédi óriás, Nagykőrösi óriás and Szegedi mammut are closer related in blooming and ripening date, as well as in size of fruit to each other than the variety Ligeti óriás.

 

135
156