Search



Show Advanced search options Hide Advanced search options
Improving the postproduction quality of Rose cut flowers
Published November 15, 2004
109-114.

In order to improve the post production quality of cut flowers of Rosa hybrida L. cv. Baroness, the effect of 8-hydroxyquinoline sulfate (8-HQS), silver thiosulfate (STS) and 1-methylcyclopropene ( I-MCP) were investigated. 8-HQS was used at 200 and 400 ppm with or without sucrose at 50 g LI. STS was used at 0.2, and 0.4 mM with or wit...hout sucrose at 50 g 1-I. l-MCP was used at 0.3, 0.5 and 0.7 g in-3 for 6h.

The postproduction quality was improved as a result of using any chemical treatment comparing with untreated control. All the treatments of 8-HQS increased the vase life and minimized the percentage of weight loss of rose cut flowers compared to the control. The vase life was lorger when 8-HQS was combined with sucrose. The best treatment of 8-HQS was 400 ppm 8-HQS + 50 g 1-1 sucrose. STS treatment led to prolong the vase life and minimized the percentage of weight loss compared to the control. In addition, the effect was better when sucrose was added to STS. The treatment of STS at 0.4 mM + 50 g 1-1 sucrose was the best one. l -MCP treatment prolonged the vase life and lowered the percentage of weight loss at any level compared with untreated control. The best treatment in this concern was l -MCP at 0.5 g m-3 for 6h. The chlorophyll content (chl.a and chid)) of the leaves for the best treatment of each chemical was higher than the control. The treatment of STS at 0.4 mM + 50 g 1-1 sucrose gave the best results in this respect.

Show full abstract
72
88
Postharvest features of chrysanthemum cut flowers as affected by different chemicals
Published March 16, 2004
127-131.

Cut flowers of Chrysanthemum morifolium RAM cv. Suny Reagan were treated with different concentrations of 8- hydroxyquinoline sulfate (8-HQS), silver thiosulfate (STS) and 1-methylcyclopropene (1-MCP) in order to improve the post production quality. 8-HQS was used at 200 and 400 ppm with or without sucrose at 50 O. STS was used at 0.2,... and 0.4 mM with or without sucrose at 50 g/1 1-MCP was used at 0.3, 0.5 and 0.7 g/m3 for 6h.

All the treatments of 8-HQS prolonged the vase life and minimized the percentage of weight loss of chrysanthemum cut flowers compared to the control. The vase life was larger when sucrose not combined with 8-HQS. The best treatment of 8-1-IQS was 400 ppm 8-HQS without sucrose. STS treatment led to prolong the vase life and minimized the percentage of weight loss comparing to the control. In addition, the effect was better when sucroseas was added to STS. The treatment of STS at 0.4 mM + 50 g/I sucrose was the best one. 1-MCP treatment increased the vase life and lowered the percentage of weight loss at any level comparing with untreated control. The best treatment in this concern was 1-MCP at 0.5 g/m3 for 6h. The chlorophyll content (chl.a and chl.b) of the leaves for the best treatment of each chemical was higher than that of the control. The treatment of 1-MCP at 0.5 g/m3 6h gave the best results in this respect.

Show full abstract
70
84
Evaluating vase life and tissue structure of some compositae (Asteraceae) species
Published June 24, 2003
87-89.

The vase life of cut flowers and effects of various chemicals was examined with the help of a pulse treatment. According to the results using of chemicals (preservatives, disinfectants as well as blocking of synthesis of ethylene) is ineffective if it is used after seeding This shows the great importance of harvesting time.

Using 8-HQS ...or l-MCP + 8-HQS proved to be the best for vase life in most of the samples. Using these materials did not prevent the appearance of air bubbles in the stems and absorption could be observed continuously.

To examine the tissue structure reaction of chemicals stems were stained with toluidin-blue, and high of absorption was measured. It was found that in cases, when absorption was bad, small air bubbles blocked the xylem vessels.

All the species examined (Aster linosyris, Achillea collina, Aster novi-belgii, Inula britannica, Solidago canadensis, Inula ensifolia, Senecio jacobea) show similar reactions to chemicals because they are the members of the same family.

Show full abstract
80
101
Extending the vase life of Solidago canadensis cut flowers by using different chemical treatments
Published June 24, 2003
83-86.

In order to increase the vase life as well as quality of leaves of goldenrod (Solidago canadesis), the effect of 8-hydroxyquinoline sulphate (8-HQS), silver thiosulphate (STS) and l-methylcyclopropene (l-MCP) were investigated. 8-HQS was used as a continuous treatment at 400 ppm with or without sucrose at 50 g/l. The treatment of STS w...as used by putting the flower bases at 0.4 mM for 6h with or without sucrose at 50 g/l. l -MCP was used at 0.5 g/m3 for 6h dry or in water. Except the treatment of l -MCP in water, the chemical treatments, which were used, led to the increase vase of life of leaves as well as to the inflorescence of cut solidago spikes compared to the control. The best treatment in this concern was 8-HQS at 400 ppm without sucrose, which resulted in longest vase life of leaves as well as inflorescences and lowest percent loss of fresh weight of initial.

Show full abstract
99
119
1 - 4 of 4 items