Search

Published After
Published Before

Search Results

  • Damages caused by winter frosts, their temporal variation and frequencies in the main fruit growing region of Transdanubia and of the East Tisza regions of Hungary
    89-97.
    Views:
    200

    The aim of the study was the study of winter frost damages, especially their changes expressed in temporal frequencies on the main fruit growing regions of the country. In our earlier paper, we introduced the calculation with the term LT50 as the quantitative expression of temperature threshold, when the lethality halves the survival of plant organs, buds or cells causing 50% death rate. The damage is highly dependent on the temperature and on its duration (length of time), but not at least on the frost tolerance of the fruit trees. The incidence and severity of damage is analysed according to the apricot and peach varieties of their different susceptibility or tolerance too. Four fruit growing regions, two of the in Transdanubia and two belonging to the regions east of the Tisza river have been selected to trace the incidence and severity of frost damages. For that purpose, we analysed the history of the past 60 year period, 1951–2010, utilising the database of the network of 16 meteorological stations of the countrywide service. Being aware of the values of LT50 during the rest period and afterward, the compulsory dormancy caused by low temperature, the number of days, the probability of frost damage could be predicted. The role of the orographical profi le, the height above sea level and the exposition of plantations are also decisive. Within the same plantation, 20–30 m difference of level may cause large diversity in temperature and frost damage. Air circulation and regular incidence of winds within the Carpathian basin modify the occurrence and severity of damages. Lowlands near the southern and northern country borders are particularly exposed to winter frosts. Most damages are reported in February, as temperatures below –20 °C especially if the fi rst part of the winter was mild, or in January was a warm period. With the end of the physiological rest period of the trees, the frost-susceptibility increases signifi cantly, and a cold period of –15 °C may cause heavy damage. This study proves that tolerance of varieties infl uence the damages substantially. By planting frost tolerant varieties, winter frost damages could be diminished by 40–50% at the same growing sites. Present results may also offer a tool to estimate the risk of frost damages and express the security of yields at a given site based on the data accumulated in the database over many years.

  • Irrigation modeling in a pear orchard
    75-79.
    Views:
    213

    The pear has large water requirement, therefore the planting of high density and grass covered pear orchards are needed irrigation
    conditions in Hungary. Drip irrigation spread in the orchards is due to the 90–95% of water use efficiency. One of the key role of irrigation is the
    proper determination of evapotranspiration and crop coefficients. As there is a considerable lack of information for different crops or fruits the
    Penman-Monteith method is used for the estimation of evapotranspiration, using CROPWAT 8.0. The research field was the genetic collection of
    pear at Újfehértó, in Hungary, which is situated in Nyírség meso-region. Our aim was to establish drip irrigation at this site. Based on the results
    of CROPWAT irrigation model the mean amount of the total gross irrigation is between 230–270 mm, within 3 irrigation interval regarding
    climatic and rainfall data of the last 10 years. In 2009, due to heavy drought, the total gross irrigation was 355,4mm/year on sandy soil calculating
    with 45% total available water depletion in 5 irrigation interval. The sizing of the irrigation system was set to the maximum 0.55 l/s/ha, which is
    6.3 l/tree/h. 6.3 l/tree/h can be carried out with a drip emitter having 16 mm wing lines diameter, 4 l/h water flow at 3 atm pressure.