Yield and fruit quality response to foliar application of biostimulants in an apple orchard
Authors
View
Keywords
License
Copyright (c) 2025 International Journal of Horticultural Science

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How To Cite
Abstract
Nutrient supply plays an important role in fruit production technology. Among the methods of nutrient management, the application of foliar fertilization has become an essential tool to harmonize the vegetative and generative performance of fruit trees. This study was conducted to determine the effect of four foliar fertilizers (Bistep, brown juice, Trichoderma harzianum, Clonostachys rosea) on yield and fruit quality in an apple orchard with the cultivar ‘Pinova’, at the University of Debrecen in Hungary. Trees were trained to a slender spindle canopy with a spacing of 4 × 1 m. Treatments were applied five times during different phenological phases in 2021 and 2022. Based on our results, biostimulants had a positive effect on fruit yield and fruit quality, but extreme weather events also influenced the data. In 2021, the effect of the treatments on yield data could not be observed (10.1–13.5 kg/tree; 0.16–0.24 kg/cm²). However, in 2022, plants sprayed with Bistep, T. harzianum, and C. rosea reached 28.7–31.2 kg/tree (0.33–0.46 kg/cm²), while control trees produced only 19.8 kg/tree (0.20 kg/cm²). Fruit size development improved with an increase of 2–6 mm over the two years. Among the treatments, Bistep was able to enhance fruit surface coloration to a greater extent in 2021, as red skin color reached 44% for this foliar fertilizer, while control trees presented only 27%.
References
- Al-Nabhani, S.S., Kazerooni, E.A., Al-Raqmi, S., Al-Hashmi, M., Hussain, S., Velazhahan, R., Al-Sadi, A.M. (2024): Isolation of Clonostachys rosea and characterizing its entomopathogenic activity against dubas bug (Ommatissus lybicus) nymphs and adults. Agriculture 14. 1770. https://doi.org/10.3390/agriculture14101770
- Altomare, C., Norvell, W. A., Björkman, T., Harman, G. E. (1999): Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology. 65. 2926–2933. https://doi.org/10.1128/AEM.65.7.2926-2933.1999
- Arya, N., Shivandu, S. K., Sharma, A., Banyal, A., Sharma, I. (2024): Use of biostimulants in fruit crop enhancement. Biotica Research Today. 4. 359-364. https://doi.org10.54083/BioResToday/6.6.2024/359-364
- Bákonyi, N., Kisvarga, S., Barna, D., Tóth, O., El-Ramady, H., Abdalla, N., Kovács, S., Rozbach, M., Fehér, C., Elhawat, N., Alshaal, T., Fári, M. (2020): Chemical traits of fermented alfalfa brown juice: its implications on physiological, biochemical, anatomical, and growth parameters of Celosia. Agronomy-Basel. 10(2): 1-22. https://doi.org/10.3390/agronomy10020247
- Bákonyi, N., Barna, D., Suhartini, W., Cziáky, Z., Makleit, P., Alshaal, T., Fári, M.G., Domokos-Szabolcsy, É. (2025): Brown juice processed from alfalfa green biomass as a source of phytohormones and saponins. Scientific Reports. 18653. https://doi.org/10.1038/s41598-025-03896-7
- Barna, D., Kisvarga, Sz., Kovács, Sz., Csatári, G., Tóth, I. O., Fári, M. G., Alshaal, T.; Bákonyi, N. (2021): Raw and fermented alfalfa brown juice induces changes in the germination and development of French marigold (Tagetes patula L.). Plants. 10. 1076. https://doi.org/10.3390/plants10061076
- Barna, D., Tarek, A., Tóth, I. O., Cziáky, Z., Fári, M.G., Domokos-Szabolcsy, É., Bákonyi, N. (2022): Bioactive metabolite profile and antioxidant properties of brown juice, a processed alfalfa (Medicago sativa) by-product, Heliyon, 8. 11. e11655, https://doi.org/10.1016/j.heliyon.2022.e11655
- Barnett, H. L., Lilly, V. G. (1962): A destructive mycoparasite, Gliocladium roseum. Mycologia 54(1): 72–77. https://doi.org/10.1080/00275514.1962.12024980
- Bigirimana, J., De Meyer, G., Poppe, J., Elad, Y., Höfte, M. (1997): Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harziamum. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent. 62. 1001–1007. http://hdl.handle.net/1854/LU-275275
- Chittibomma, K., Devarasetti, V., Boboy Singh, H., Merugu, G. R., Vaishnavi, C. (2023): Environmental impacts of nano-biostimulants in agriculture. The Pharma Innovation. 12. 609-615.
- Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., Rouphael, Y. (2017): Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Frontiers in Plant Science. 8:2202. https://doi.org/10.3389/fpls.2017.02202
- Cota, L. V., Maffia, L. A., Mizubuti, E. S. G., Macedo, P. E. F. (2009): Biological control by Clonostachys rosea as a key component in the integrated management of strawberry gray mold. Biological Control 50(3): 222–230.
- Csihon, Á., Gonda, I. (2016): Növénykondicionáló a gyakorlatban. Kertészet és Szőlészet 65(49): 14-16. p.
- Csihon, Á., Gonda, I. (2017): Biostimulátorok a gyümölcstermesztésben. Zöldség-Gyümölcs Piac és Technológia. XXI. évfolyam. 2017/1. negyedév. 27-29.
- Csihon, Á., Gonda, I. (2018): Növénykondicionálók a gyümölcstermesztésben. Agrofórum Extra 73: 16-18.
- Csihon, Á., Gonda, I. (2020): A biostimulátorok alkalmazásának lehetőségei a gyümölcstermesztésben. Értékálló Aranykorona 20(2): 8-9.
- Csihon, Á., Gonda, I., Daragó, Á. (2021a): Növénykondicionáló nanokészítmény hatásának vizsgálata csemegeszőlő ültetvényben. Borászati Füzetek. 2021/1. 33-37.
- Csihon, Á., Gonda, I., Holb, I. J. (2021b): Effect of a nanotechnology-based foliar fertilizer on the yield and fruit quality in an apple orchard. International Journal of Horticultural Science 27: 29-32. p. https://doi.org/10.31421/ijhs/27/2021/9809
- Csótó, A., Tóth, G., Riczu, P., Zabiák, A., Tarjányi, V., Fekete, E., Karaffa, L., Sándor, E. (2024): Foliar spraying with endophytic Trichoderma biostimulant increases drought resilience of maize and sunflower. Agriculture. 14: 2360. https://doi.org/10.3390/agriculture14122360
- Daragó, Á., Kalydi, T. (2023): Ökológiai növényvédelem kihívásai a nanotechnológiával készült Bisteppel szőlő- és gyümölcskultúrában. Georgikon for Agriculture. 27(1): 154-158.
- De Meyer, G., Bigirimana, J., Elad, Y., Hofte, M. (1998): Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology. 104. 279–286. https://doi.org/10.1023/A:1008628806616
- De Pascale, S., Rouphael, Y., Colla, G. (2017): Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. European Journal of Horticultural Science. 82 (6): 277–285. https://doi.org/10.17660/eJHS.2017/82.6.2
- Domokos-Szabolcsy, É., Yavuz, S. R., Picoli, E., Fári, M. G., Kovács, Z., Tóth, C., Kaszás, L., Alshaal, T., Elhawat, N. (2023): Green biomass-based protein for sustainable feed and food supply: An overview of current and future prospective. Life. 13(2): 307. https://doi.org/10.3390/life13020307
- du Jardin, P. (2015): Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196. 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
- Elad, Y. (1994): Biological control of grape grey mould by Trichoderma harzianum. Crop Protection. 13. 35–38. https://doi.org/10.1016/0261-2194(94)90133-3
- Han, P. P., Zhang, X. P., Xu, D., Zhang, B., Lai, D. Zhou, L. (2020): Metabolites from Clonostachys fungi and their biological activities. J. Fungi (Basel) 6(4): 229. https://doi.org/10.3390/jof6040229
- Fári, M. G., Domokos-Szabolcsy, É. (2019): Method for producing plant protein coagulum. Hun. Patent WO2019150144, 8 August 2019.
- Frioni, T., VanderWeide, J., Palliotti, A., Tombesi, S., Poni, S., Sabbatini, P. (2021): Foliar vs. soil application of Ascophyllum nodosum extracts to improve grapevine water stress tolerance. Scientia Horticulturae 277. 109807.
- Graziani, G., Ritieni, A., Cirillo, A., Cice, D., Di Vaio, C. (2020): Effects of biostimulants on annurca fruit quality and potential nutraceutical compounds at harvest and during storage. Plants 9 (6): 775.
- Harman, G. E. (2000): Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T22. Plant Disease. 84. 377–393 (2000). https://doi.org/10.1094/PDIS.2000.84.4.377
- Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., Lorito, M. (2004): Trichoderma species - Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology. 2:43–56. https://doi.org/10.1038/nrmicro797
- Hussain, M., Zahra, N., Lang, T., Zain, M., Raza, M., Shakoor, N., Adeel, M., Zhou, H. (2023): Integrating nanotechnology with plant microbiome for next-generation crop health. Plant Physiol. Biochem. 196. 703–711. https://doi.org/10.1016/j.plaphy.2023.02.022
- Jadhav, R. (2018): Response of seed germination and seedling growth by the Deproteinised Juice (DPJ) from various forages. Biochemical and Cellular Archives. 18. 1181-1188.
- Jensen, D., Dubey, M., Jensen, B., Karlsson, M. (2021): Clonostachys rosea to control plant diseases. http://dx.doi.org/10.19103/AS.2021.0093.14
- Karaffa, E. (2023): The biocontrol potential of endophytic Trichoderma fungi isolated from hungarian grapevines. Part II. Grapevine Stimulation. Pathogens. 12(1): 1-14. https://doi.org/10.3390/pathogens12010002
- Kauffman, G.L., Kneivel, D.P., Watschke, T.L., 2007: Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Science. 47. 261–267. https://doi.org/10.2135/cropsci2006.03.0171
- Kincses, I., Filep, T., Nagy, P., Kovács, A. B. (2007): Water soluble nitrogen forms on two different soils as affected by biofertilization. Cereal Research Communications. 35. 597-600. https://doi.org/10.1556/CRC.35.2007.2.108
- Kisvarga, S., Kerezsi, R., Kohut, I., Tillyné Mándy, A. (2014): The effect of Ferbanat L nano-fertilizer on the growing of Petunia x grandiflora ’Musica Blue’. International Journal of Horticultural Science. 20(3-4): 107-109. https://doi.org/10.31421/IJHS/20/3-4/1144
- Kisvarga, S., Barna, D., Kovács, S., Csatári, G., O. Tóth, I., Fári, M. G., Makleit, P., Veres, S., Alshaal, T., Bákonyi, N. (2020): Fermented alfalfa brown juice significantly stimulates the growth and development of sweet basil (Ocimum basilicum L.) Plants. Agronomy. 10. 657. https://doi.org/10.3390/agronomy10050657
- Kovács, Cs., Csótó, A., Pál, K., Nagy, A., Fekete, E., Karaffa, L., Kubicek, C., Karaffa, E. (2021): The biocontrol potential of endophytic trichoderma fungi isolated from Hungarian grapevines. Part I. Isolation, Identification and In Vitro Studies. Pathogens. 10(12): 1-19. https://doi.org/10.3390/pathogens12010002
- Kovács, D., Horotán, K., Orlóci, L., Makádi, M., Mosonyi, I., Sütöri-Diószegi, M., Kisvarga, S. (2024): Morphological and physiological responses of Weigela florida ‘Eva Rathke’ to biostimulants and growth promoters. Horticulturae. 10. 582. https://doi.org/10.3390/horticulturae10060582
- Lahoz, E., Contillo, R., Porrone, F. (2004): Induction of systemic resistance to Erysiphe orontii cast in tobacco by application on roots of an isolate of Gliocladium roseum bainier. Journal of Phytopathology. 152(8–9): 465–470. https://doi.org/10.1111/j.1439-0434.2004.00876.x
- Li, J., Van Gerrewey, T., Geelen, D., (2022): A meta-analysisofbiostimulant yield effectiveness in field trials. Frontiers in Plant Science. 13. 836702. https://doi.org/10.3389/fpls.2022.836702.
- López-Bucio, J., Pelagio-Flores, R., Herrera-Estrella, A. (2015): Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae 196. 109–123. https://doi.org/10.1016/j.scienta.2015.08.043
- Lötze, E., Hoffman, E. W. (2014): Foliar application of calcium plus boron reduces the incidence of sunburn in ‘Golden Delicious’ apple. Journal of Horticultural Science and Biotechnology 89. 607–612. https://doi.org/10.1080/14620316.2014.11513127
- Manwatkar, W. G., Gogle, D. P. (2014): The effect of deproteinised juice (DPJ) on seed germination and seedling growth of different plants. International Journal of Life Sciences. 2: 65–68.
- Morandi, M. A. B., Sutton, J. C., Maffia, L. A. (2000): Effects of host and microbial factors on development of Clonostachys rosea and control of Botrytis cinerea in rose. European Journal of Plant Pathology. 106(5): 439–448.
- Mosa, W. F. A., Sas-Paszt, L., Głuszek, S., Górnik, K., Anjum, M. A., Saleh, A. A., Abada, H. S., Awad, R. M. (2023): Effect of some biostimulants on the vegetative growth, yield, fruit quality attributes and nutritional status of apple. Horticulturae 9. 32. https://doi.org/10.3390/horticulturae9010032
- Mukhopadhyay, S. S. (2014): Nanotechnology in agriculture: prospects and constraints. Nanotechnology, science and applications. 7. 63–71. https://doi.org/10.2147/NSA.S39409
- Nagy, P. T., Csihon, Á., Szabó, A. (2019): Effects of algae products on nutrient uptake and fruit quality of apple. Natural Resources and Sustainable Development 9(1): 80-91. https://doi.org/10.31924/nrsd.v9i1.026
- Naik, K., Mishra, S., Srichandan, H., Singh, P. K., Sarangi, P. K. (2019): Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology. 21. 101326. https://doi.org/10.1016/j.bcab.2019.101326
- Pirie N.W. (1990): Leaf protein: Production and use. Interdisciplinary Science Reviews. 15(2):168-176. https://doi.org/10.1179/isr.1990.15.2.168
- Prasad, R., Kumar, V., Prasad, K. S. (2014): Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology. 13. 705–713. https://doi.org/10.5897/AJBX2013.13554
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. (2017): Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology. 8. 1014. https://doi.org/10.3389/fmicb.2017.01014
- Ream, H. W., Smith, D., Walgenbach, R. P. (1977): Effects of deproteinized alfalfa juice applied to alfalfa-bromegrass, bromegrass, and corn. Agronomy Journal. 69. 685–689.
- Rodríguez-Martínez, R., Mendoza-de-Gives, P., Aguilar-Marcelino, L., López-Arellano, M.E., Gamboa-Angulo, M., Hanako RosasSaito, G., Reyes-Estébanez, M., Guadalupe García-Rubio, V. (2018): In vitro lethal activity of the nematophagous fungus Clonostachys rosea (Ascomycota: Hypocreales) against nematodes of five different taxa. BioMed research international. 3501827. https://doi.org/10.1155/2018/3501827
- Saraiva, R. M., Czymmek, K. J., Borges, A. V., Caires, N. P., Maffia, L. A. (2015): Confocal microscopy study to understand Clonostachys rosea and Botrytis cinerea interactions in tomato plants. Biocontrol Science and Technology 25: 56–71. https://doi.org/10.1080/09583157.2014.948382
- Saraiva, R. M., Borges, A. V., Borel, F. C., Maffia, L. (2020): Compounds produced by Clonostachys rosea deleterious to Botrytis cinerea. Brazilian Journal of Agriculture. 95: 34–47. https://doi.org/10.37856/ bja.v95i1.3711
- Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., Zhou, J. (2019): Applications of nanotechnology in plant growth and crop protection: A review. Molecules. 24(14): 2558. https://doi.org/10.3390/molecules24142558
- Shigo, A. L. (1958): Fungi isolated from oak-wilt trees and their effects on Ceratocystis fagacearum. Mycologia 50(5): 757–769. https://doi.org/10.2307/3756184
- Shoresh M., Harman G. E., Mastouri F. (2010): Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology. 48:21–43. https://doi.org/10.1146/annurev-phyto-073009-114450
- Siddiqui, Y., Meon, S., Ismail, R., Rahmani, M., Ali, A., (2008): Bio-efficiency of compost extracts on the wet rot incidence, morphological and physiological growth of okra (Abelmoschus esculentus) [(L.) Moench]. Scientia Horticulturae. 117. 9–14. https://doi.org/10.1016/j.scienta.2008.03.008
- Soltaniband, V., Bregard, A., Gaudreau, L., Dorais, M., (2022): Biostimulants promote plant development, crop productivity, and fruit quality of protected strawberries. Agronomy. 12(7): 1684.
- Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Andreotti, C. (2018): Use of biostimulants for organic apple production: effects on tree growth, yield, and fruit quality at harvest and during storage. Frontiers in Plant Science. 9 1342.
- Sun, Z. H., Li, S. D., Ren, Q., Xu, J.-L., Lu, X., Sun, M. H. (2020): Biology and applications of Clonostachys rosea. Journal of Applied Microbiology. 129. 486–495. https://doi.org/10.1111/jam.14625
- Sutton, J. C., Li, D. W., Peng, G., Yu, H., Zhang, P. Valdebenito-Sanhueza, R. M. (1997): Gliocladium roseum - A versatile adversary of Botrytis cinerea in crops. Plant Disease 81(4): 316–328. https://doi.org/10.1094/PDIS.1997.81.4.316
- Tilly-Mándy A., Koncz L., Honfi P., Hrotkó K. (2011): The effect of Bistep (Ferbanat L) on the root formation of Pelargonium ’Robert’s Lemon’ In: Abstracts (1st Transilvanian Horticulture and Landscape Stuidies Conference, Marosvásárhely) p. 71.
- Vangenechten, B. Coninck, B., Ceusters, J. (2025): How to improve the potential of microalgal biostimulants for abiotic stress mitigation in plants?. Frontiers in Plant Science. 16. https://doi.org/10.3389/fpls.2025.1568423
- Vermeulen, S.J., Aggarwal, P.K., Ainslie, A., Angelone, C., Campbell, B.M., Challinor, A.J., Hansen, J.W., Ingram, J.S.I., Jarvis, A., Kristjanson, P., Lau, C., Nelson, G., Thornton, P. Wollenberg, E. (2012): Options for support to agriculture and food security under climate change. Environmental Science & Policy. 15. 136–144. https://doi.org/10.1016/j.envsci.2011.09.003
- Visconti, D., Fiorentino, N., Cozzolino, E., Woo, S., Fagnano, M., Rouphael, Y. (2020): Can Trichoderma-Based biostimulants optimize n use efficiency and stimulate growth of leafy vegetables in greenhouse intensive cropping systems?. Agronomy. 10. 1-17. https://doi.org/10.3390/agronomy10010121
- Yaseen, A., Takácsné Hájos, M. (2021): The effect of Willow extract, Bistep and their combination on some quality parameters of lettuce (Lactuca sativa L.). Acta Agraria Debreceniensis 2021-1. 239-247. https://doi.org/10.34101/ACTAAGRAR/1/8537
- Yu, H., Sutton, J. C. (1997): Morphological development and interactions of Gliocladium roseum and Botrytis cinerea in raspberry. Canadian Journal of Plant Pathology. 19(3): 237–246.
- Zargar, M., Tumanyan, A., Ivanenko, E., Dronik, A., Tyutyuma, N., Pakina, E. (2019): Impact of foliar fertilization on apple and pear trees in reconciling productivity and alleviation of environmental concerns under arid conditions. Communicative & Integrative Biology 12:1–9. https://doi.org/10.1080/19420889.2019.1565252
- Zulfiqar, F., Moosa, A., Ali, H. M., Bermejo, N. F., Munné-Bosch, S. (2024): Biostimulants: A sufficiently effective tool for sustainable agriculture in the era of climate change?, Plant Physiology and Biochemistry 211, 108699. ISSN 0981-9428, https://doi.org/10.1016/j.plaphy.2024.108699.
https://doi.org/10.31421/ijhs/31/2025/15775