Agrobacterium transformation of Rhodiola sp.: current status and limitations
Authors
View
Keywords
License
Copyright (c) 2024 International Journal of Horticultural Science
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How To Cite
Abstract
The study of secondary metabolites has led to the discovery of new drugs for treating human diseases. However, consistent plant supply can be challenging, leading to the use of plant tissue culture techniques such as hairy root culture. Hairy roots have stable genetics, lateral branching, and can produce secondary metabolites, including alkaloids, flavonoids, and terpenoids. Research on hairy roots as a subject began in the late 19th century, and for the last four decades, hairy roots have been utilized for producing secondary metabolites and recombinant proteins. This article focuses on Rhodiola species - genus of perennial plants that belongs to the family Crassulaceae - and its potential as a source of secondary metabolites using hairy root culture techniques. Rhodiola sp. is widely distributed throughout the Arctic regions of the Northern Hemisphere, with several species having significant medicinal properties. The article discusses the possible use of hairy root cultures for the production of Rhodiola secondary metabolites, including salidroside and rosavins, which have demonstrated significant pharmacological activity in various studies. The use of elicitation and genetic engineering techniques to boost secondary metabolite production in Rhodiola hairy roots is also explored. Overall, the article highlights the potential of Rhodiola hairy root cultures as a valuable source of secondary metabolites with medicinal properties. However, despite some studies Rhodiola hairy root induction and culturing still remains highly unexplored.
References
- Anghelescu, I. G., Edwards, D., Seifritz, E., Kasper, S. (2018): Stress management and the role of Rhodiola rosea: a review. International Journal of Psychiatry in Clinical Practice. 22(4): 242-252. https://doi.org/10.1080/13651501.2017.1417442.
- Bartwal, A., Mall, R., Lohani, P., Guru, S. K., Arora, S. (2013): Role of Secondary Metabolites and Brassinosteroids in Plant Defense Against Environmental Stresses. Journal of Plant Growth Regulation. 32: 216–232. https://doi.org/10.1007/s00344-012-9272-x.
- Bawa, A. S., Khanum, F. (2009): Anti - inflammatory activity of Rhodiola roseae “a second-generation adaptogen”. Phytotherapy Research. 23: 1099-1102.
- Bhaskar, R., Xavier, L. S. E., Udayakumaran, G. (2022): Biotic elicitors: A boon for the in-vitro production of plant secondary metabolites. Plant Cell, Tissue and Organ Culture. 149: 7–24.
- Bonhomme, V., Laurain-Mattar, D., Lacoux, J., Fliniaux, M. A., Jacquin-Dubreuil. A. (2000): Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rolA, B, C genes only. Journal of Biotechnology. 81: 151-158.
- Brown, R. P., Gerbarg, P. L., Ramazanov, Z. (2002): Rhodiola rosea, a phytomedicinal overview. HerbalGram, 56: 40-52.
- Chandra, S. (2012): Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnology letters. 34: 407-415.
- Chilton, M. D., Tepfer, D., Petit, A., David, C., Casse-Delbart, F., Tempé, J., (1982): Agrobacterium rhizogenes inserts T-DNA into the genome of the host plant root cells. Nature. 295: 432–434. https://doi.org/10.1038/295432a0
- Darbinyan, V., Kteyan, A., Panossian, A., Gabrielian, E., Wikman, G., Wagner, H., (2000): Rhodiola rosea in stress induced fatigue - A double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine. 7(5): 365-371. https://doi.org/10.1016/S0944-7113(00)80055-0.
- Donini, M., Marusic, C. (2018): Hairy roots as bioreactors for the production of biopharmaceuticals. In Hairy Roots: An Effective Tool of Plant Biotechnology. Springer. 213–225. ISBN 9789811325625.
- Doran, P. (2013): Biotechnology of Hairy Root Systems. Advances in Biochemical Engineering/ Biotechnology. Springer Berlin, Heidelberg. 1192:134. https://doi.org/10.1007/978-3-642-39019-7
- Elsakov, G. V., Gorelova, A. P. (1999): Fertilizer effects on the yield and biochemical composition of rose-root stonecrop in North Kola region. Agrokhimiya. 10: 58-61.
- Furmanowa, M., Kedzia, B., Hartwich, M., Kozlowski, J., Krajewska-Patan, A., Mscisz, A., Jankowiak, J. (1999): Phytochemical and pharmacological properties of Rhodiola rosea L. Herba Polonica. 45(2): 108-113.
- Gelvin, S. B. (2009): Agrobacterium in the Genomics Age. Plant Physiology. 150(4): 1665-1676. https://doi.org/10.1104/pp.109.139873
- Georgiev, M., Pavlov, A., Bley, T. (2007): Hairy root type plant in vitro systems as sources of bioactive substances. Applied Microbiology and Biotechnology. 74: 1175–1185. https://doi.org/10.1007/s00253-007-0856-5
- Georgiev, M. I., Agostini, E., Ludwig-mu, J., Xu, J., (2012): Genetically transformed roots: from plant disease to biotechnological resource. Trends in Biotechnology. 30(10): 528-537. https://doi.org/10.1016/j.tibtech.2012.07.001
- Georgiev, M. I., Ludwig-Müller, J., Bley, T. (2010): Hairy root culture: copying nature in new bioprocesses. Medicinal Plant Biotechnology. CABI Books: CABI International. 156-175. https://doi.org/10.1079/9781845936785.0156
- Grech-Baran, M., Sykłowska-Baranek, K., Krajewska-Patan, A., Wyrwał, A., Pietrosiuk, A. (2014): Biotransformation of cinnamyl alcohol to rosavins by non-transformed wild type and hairy root cultures of Rhodiola kirilowii. Biotechnology Letters. 36: 649–656. https://doi.org/10.1007/s10529-013-1401-5.
- Gutierrez-Valdes, N., Häkkinen, S. T., Lemasson, C., Guillet, M., Ritala, A., Cardon, F., (2020): Hairy Root Cultures - A Versatile Tool With Multiple Applications. Frontiers in Plant Science. 11: 1-11. https://doi.org/10.3389/fpls.2020.00033
- Himmelboe, M., Lauridsen, U. B., Hegelund, J. N., Müller, R., Lütken, H. (2015): Agrobacterium Rhizogenes Mediated Transformation of Rhodiola Sp. – An Approach to Enhance the Level of Bioactive Compounds Acta Horticulturae. 1098: 143-149. https://doi.org/10.17660/ActaHortic.2015.1098.15
- Hodges, L. D., Lee, L., Mcnett, H., Gelvin, S. B., Ream, W. (2009): The Agrobacterium rhizogenes GALLS Gene Encodes Two Secreted Proteins Required for Genetic Transformation of Plants. Journal of Bacteriology. 191(1): 355-364. https://doi.org/10.1128/JB.01018-08
- Cui, H., Liu, X., Zhang, J., Zhang, K., Yao, D., Dong, S., Feng, S., Yang, L., Li, Y., Wang, H., Huang, J., Wang, J. (2021): Rhodiola rosea L. Attenuates Cigarette Smoke and Lipopolysaccharide-Induced COPD in Rats via Inflammation Inhibition and Antioxidant and Antifibrosis Pathways. Evidence-Based Complementary and Alternative Medicine. 2021: 1-18. https://doi.org/10.1155/2021/6103158
- Kamada, H., Okamura, N., Satake, M., Harada, H., Shimomura, K. (1986): Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Reports. 5: 239-242. https://doi.org/10.1007/BF00269811
- Kelly, G. S. (2001): Rhodiola rosea: a possible plant adaptogen. Alternative medicine review: a journal of clinical therapeutic. 6 (3): 293-302. PMID: 11410073 https://pubmed.ncbi.nlm.nih.gov/11410073
- Kifle, S., Shao, M., Jung, C., Cai, D. (1999): An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulgaris L.). Plant Cell Reports. 18: 514-519.
- Kodahl, N., Müller, R., Lütken. H. (2016): The Agrobacterium rhizogenes oncogenes rolB and ORF13 increase formation of generative shoots and induce dwarfism in Arabidopsis thaliana (L.) Heynh. Plant Science. 252: 22–29. https://doi.org/10.1016/j.plantsci.2016.06.020
- Lan, X., Chang, K., Zeng, L., Liu, X., Qiu, F., Zheng, W., Quan, H., Liao, Z., Chen, M., Huang, W., Liu, W., Wang, Q. (2013): Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase. PLoS ONE. 8(10): 75459. https://doi.org/10.1371/journal.pone.0075459
- Li, X., Sipple, J., Pang, Q., Du, W. (2012): Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance. Blood 119: 4162–4173. https://doi.org/10.1182/blood-2011-10-387332
- Li, Y., Pham, V., Bui, M., Song, L., Wu, C., Walia, A., Uchio, E., Smith-Liu, F., Zi, X. (2017): Rhodiola rosea L. An herb with anti-stress,anti-aging, and immunostimulating properties for cancer chemoprevention. Current Pharmacology Reports. 3: 384–395. https://doi.org/10.1007%2Fs40495-017-0106-1
- Mano, Y., Ohkawa, H., Yamada, Y. (1989): Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Science. 59: 191–201. https://doi.org/10.1016/0168-9452(89)90137-4
- Marchev, A.S., Dinkova-Kostova, A.T., György, Z., Mirmazloum, I., Aneva, I.Y., Georgiev, M.I. (2016): Rhodiola rosea L.: from golden root to green cell factories. Phytochemistry Reviews 15:515-536.
- Martínez, M. I., Barba-Espín, G., Favero, B. T., Lütken, H. (2020): Rhizobium rhizogenes-mediated transformation of Rhodiola rosea leaf explants. Bragantia. 79(2): 213-223. https://doi.org/10.1590/1678-4499.20190428
- Massa, S., Paolini, F., Marino, C., Franconi, R., Venuti, A. (2019): Bioproduction of a therapeutic vaccine against human papillomavirus in tomato hairy root cultures. Frontiers in Plant Science. 10: 452. https://doi.org/10.3389/fpls.2019.00452
- Nabavi, S. F., Braidy, N., Orhan, I. E., Badiee, A., Daglia, M., and Nabavi, S. M. (2016): Rhodiola rosea L. and Alzheimer's Disease: From Farm to Pharmacy. Phytotherapy Research. 30: 532-539. https://doi.org/10.1002/ptr.5569
- Ren, M., Xu, W., Xu, T. (2019): Salidroside represses proliferation,migration and invasion of human lung cancer cells throughAKT and MEK/ERK signal pathway. Artificial Cells, Nanomedicine, and Biotechnology. 47:1014-1021. https://doi.org/10.1080/21691401.2019.1584566
- Roychowdhury, D., Ghosh, B., Chaubey, B., Jha, S. (2013): Genetic and morphological stability of six-year-old transgenic Tylophora indica plants. Nucleus. 56: 81–89. https://doi.org/10.1007/s13237-013-0084-6
- Skarjinskaia, M., Ruby, K., Araujo, A., Taylor, K., Gopalasamy-Raju, V., Musiychuk, K., Chichester, J. A., Palmer, G. A., de la Rosa, P., Mett, V., Ugulava, N., Streatfield, S. J., Yusibov, V. (2013): Hairy Roots as a Vaccine Production and Delivery System. Advances in Biochemical Engineering/Biotechnology. 134: 115–134. https://doi.org/10.1007/10_2013_184
- Smith, E. F., Brown, N. A., Townsend, C. O. (1911): Crown-Gall of Plants: Its Cause and Remedy. US Government Printing Office: Washington, DC, USA. 213, 1-215.
- Stepanova, A., Malunova, M., Salamaikina, S., Selimov, R., Solov’eva, A. (2021): Establishment of Rhodiola quadrifida Hairy Roots and Callus Culture to Produce Bioactive Compounds. Phyton International Journal of Experimental Botany. 90(2): 543-552. https://doi.org/10.32604/phyton.2021.013223
- Tao, K., Wang, B., Feng, D., Zhang, W., Lu, F., Lai, J., Huang, L., Nie, T., Yang, Q. (2016): Salidroside protects against 6-hydroxy- dopamine-induced cytotoxicity by attenuating ER stress. Neuroscience Bulletin. 32: 61-69. https://doi.org/10.1007/s12264-015-0001-x
- Wu, Y., Lian, L., Jiang, Y., Nan, J. (2009): Hepatoprotective effects of salidroside on fulminant hepatic failure induced by d-galactosamineand lipopolysaccharide in mice. Journal of Pharmacy and. Pharmacology. 61(10): 1375-1382. https://doi.org/10.1211/jpp/61.10.0015
- Yang, H., Xue, Y., Yang, C., Shen, W., Fan, Y., Chen, X. (2019a): Modular engineering of Tyrosol production in Escherichia coli. Journal of Agricultural and Food Chemistry. 67(14): 3900-3908. https://doi.org/10.1021/acs.jafc.9b00227
- Yang, L., Yu, Y., Zhang, Q., Li, X., Zhang, C., Mao, T., Liu, S., Tian, Z. (2019b): Anti - gastric cancer effect of Salidroside through elevating miR-99a expression. Artificial Cells, Nanomedicine, and Biotechnology. 47(1): 3500-3510. https://doi.org/10.1080/21691401.2019.1652626
- Yu, G., Li, N., Zhao, Y., Wang, W., Feng, X., L. (2018): Salidroside induces apoptosis in human ovarian cancer SKOV3 and A2780 cells through the p53 signaling pathway. Oncology Letters. 15: 6513-6518. https://doi.org/10.3892/ol.2018.8090
- Yu, H. S., Ma, L. Q., Zhang, J. X., Shi, G. L., Hu, Y. H., Wang, Y. N. (2011): Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis. Phytochemistry. 72(9): 862-70. https://doi.org/10.1016/j.phytochem.2011.03.020
- Zhang, N., Wright, T., Wang, X., Karki, U., Savary, B. J., Xu, J. (2019): Engineering ‘designer’ glycomodules for boosting recombinant protein secretion in tobacco hairy root culture and studying hydroxyproline-O-glycosylation process in plants. Plant Biotechnology Journal. 17(6): 1130-1141. https://doi.org/10.1111/pbi.13043
- Zhou, X., Wei, X., Zhao, Z., Sun, J., Lv, J., Cai, Y., Xu, H. (2010): The influence of external factors on biomass and salidroside content in hairy roots of Rhodiola sachalinensis induced by Agrobacterium rhizogenes. 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China. 2130-2133. https://doi.org/10.1109/BMEI.2010.5639964
- Zhou, X., Wu, Y., Wang, X., Liu, B., Xu, H. (2007): Salidroside Production by Hairy Roots of Rhodiola sachalinensis Obtained after Transformation with Agrobacterium rhizogenes. Biological and Pharmaceutical Bulletin. 30(3): 439-442. https://doi.org/10.1248/bpb.30.439