Search

Published After
Published Before

Search Results

  • Development and Characterization of Sisal Fiber Reinforced Polypropylene Composite Materials
    348-358
    Views:
    332

    In most of the developing countries, plastic polypropylene is not fully recycled and converted in-to use after it is once used. Sisal fiber is also widely available in different developing countries like Ethiopia. Adding this two materials and developing automotive interior part was taken as a primary motive for it reduces cost and is environmentally friendly. Thus, the main purpose of this research is to develop composite material from natural fibre (sisal fiber) reinforced with recycled plastic waste (polypropylene) for interior automobile accessories specifically for internal door trim panel application. This research examines effect of fiber length, fiber loading and chemical treatment of fiber on the physical and chemical properties of the sisal fiber reinforced polypropylene (SFRPP) composite material. The waste polypropylene and the treated and untreated sisal fiber with variable length and weight ratio (fiber/matrix ratio) were mixed. Flammability of sisal fiber reinforced Polypropylene (SFRPP) composites material was examined by a horizontal burning test according to ASTM D635 and chemical resistance of the sisal fibre reinforced PP composites was studied using ASTM D543 testing method. The result on the flammability test shows that treated fiber has lower burning rate than untreated fiber and decreases with increase in fiber length and fiber loading. The resistance of the composites to water has increased as the fiber length increases and decreased as the fiber loading increase. Generally, SFRPP composite is found to have better resistance to water than NaOH and H2SO4 and treating the fiber has brought considerable improvement on chemical resistance of the composite. Fiber loading and fiber length has positive and negative effect on the flammability of the SFRPP composite respectively.

  • Polylactic Acid as a Potential Alternatives of Traditional Plastic Packagings in Food Industry
    123-129
    Views:
    321

    Huge quantity of synthetic polymers is used as packaging materials in different fields of food industries. A significant part of these polymers applied as a primary, direct food contact construction. The scoped application area is the sweet industry. In this field Polystyrol (PS), Polypropylene (PP) and Polyethylene terephthalate (PET) have used but during the last fifteen years the usage of PET has been grown. In one hand the price of this material is efficient, form other hand the PET is the one of the most safe (for food industrial applications) petrol chemical plastic that can be used as primary or secondary food contact packaging material. To maximize the customer safety and minimize the environmental impact of traditional PET, a new bio-sourced and bio-degradable alternative polymer aimed to be used in this special food industrial segment. One of the potential alternatives is the Polylactic acid (PLA) that would be a possible substitute as it is compostable and produced from renewable sources and has good physical and mechanical properties [1].

  • Structural Investigation of Granular Composites by Modern Methods
    179-185
    Views:
    127

    Structural investigations of polymer-based particulate composites were carried out using modern test methods. We had composite sheets with different compositions and different injection molding speeds. In the polypropylene matrix, three types of glass beads were mixed in three weight percentages. In our investigations, the granular composites were studied with a widely used examination equipment, scanning electron microscope (SEM) and industrial computer tomography (CT) as a modern diagnostic tools. The purpose of the study was to investigate the distribution and interfacial adhesion of glass beads.

Database Logos