Application of Nanomaterials in Food Industry and Agriculture
Authors
View
Keywords
License
Copyright (c) 2022 Ákos Pintér-Móricz, Dr. Zákányiné Dr. Mészáros Renáta
This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Accepted 2022-12-11
Published 2022-12-11
Abstract
Nanomaterials have unique application features which can mainly be associated with their size properties. These materials have much higher surface than the normal particle size variant of the same materials. Due to these properties, nanomaterials are widely used in the industry. Food industry and the agrarian sector are using these materials increasingly. The main goal of nano size components and additives are the improvement of some parameters of the food manufacturing process, the elongation of the best before date of the food and the improvement of the texture, stability and the consistence of the food. Probably, nanomaterials will play an important role in the development of the food industry, moreover, it can be anticipated that nanotechnology will also appear there and will influence the whole food chain. It should be noted that food industry is using several nano size class materials which are not referred to as nanomaterials. Some examples are the micelles of some proteins, like milk protein, and fatty acids. Considering all these, the aim of our work was to present a thorough review and summary of the current applications.
References
- EC. (2011) ’Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU)’. In EC. (Ed.), Vol. Official Journal L 275, pp. 38-40.
- Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L. (2008) ’Applications and implications of nanotechnologies for the food sector’. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 25, pp. 241-258.
- Duran, N., Marcato, P. D. (2013) ’Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review’. International Journal of Food Science and Technology, 48, pp. 1127-1134.
- de Kruif, C. G., Huppertz, T. (2012) ’Casein micelles: size distribution in milks from individual cows’. Journal of Agricultural and Food Chemistry, 60, pp. 4649-4655.
- Bouwmeester H., Brandhoff, P., Marvin, H.J.P., Weigel, S., Peters, R.J.B. (2014) ’State of the safety assessment and current use of nanomaterials in food and food production’. Trends in Food Science & Technology, 40, pp. 200-210.
- Perlatti, B., Luısa de Souza Bergo, P., Fatima das Gracas, M., da Silva, F., Batista Fernandes, J., Rossi Forim, M. (2012) ’Polymeric nanoparticle-based insecticides: A controlled release purpose for agrochemicals.’ InTech Publisher.
- de Paiva, L.B., Morales,A.R., ValenzuelaDıaz, F.R. (2008) ’Organoclays: properties, preparation and applications’. Applied Clay Science, Vol. 42 (1-2), pp. 8-24.
- Park, J. Y., Li, S. F. Y., Kricka, L. J. (2006) ’Nanotechnologic nutraceuticals: nurturing or nefarious?’ Clinical Chemistry, 52, pp. 331-332.
- Pineda, L., Chwalibog, A., Sawosz, E., Lauridsen, C., Engberg, R., Elnif, J. (2012) ’Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens’. Archives of Animal Nutrition, 66, pp. 416-429.
- Peters, R. J., Brandhof, P., Weigel, S., Marvin, H., Bouwmeester, H., Aschberger, K. (2014) RIKILT and JRC, 2014. ’Inventory of Nanotechnology applications in the agricultural, feed and food sector’. EFSA supporting publication, 2014:EN- 621., pp. 125.
- Peters, R.J.B., Bouwmeester, H., Gottardo, S., Amenta, V., Arena, M., Brandhoff, P., Marvin, H.J.P., Mech, A., Botelho Moniz, F., Quiros Pesudo, L., Rauscher, H., Schoonjans, R., Undas, A.K., Vettori, M.V., Weigel, S., Aschberger, K. (2016) ’Nanomaterials for products and application in agriculture, feed and food’. Trends in Food Science & Technology, Vol. 54, pp. 155-164.
- Gogos, A., Knauer, K., Bucheli, T. D. (2012) ’Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities’. Journal of Agricultural and Food Chemistry, 60, pp. 9781-9792.
- Frederiksen, H. K., Kristensen, H. G., Pedersen, M. (2003) ’Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin e incompatibility of the lipid and the pyrethroid and biological properties of the formulations’. Journal of Controlled Release, 86, pp. 243-252.
- Campos, E. V. R., De Oliveira, J. L., Da Silva, C. M. G., Pascoli, M., Pasquoto, T., Lima, R., et al. (2015) ’Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications’. Scientific Reports, 5, 13809.
- Wang, L. J., Li, X. F., Zhang, G. Y., Dong, J. F., Eastoe, J. (2007) ’Oil-in-water nanoemulsions for pesticide formulations.’ Journal of Colloid and Interface Science, 314, pp. 230-235.
- Martínez-Fernandez, D., Barroso, D., Komarek, M. (2016) ’Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure.’ Environmental Science and Pollution Research, 23, pp. 1732-1741.
- Kuzma, J., Romanchek, J., Kokotovich, A. (2008) ’Upstream oversight assessment for agrifood nanotechnology: A case studies approach’. Risk Analysis, 28, pp. 1081-1098.
- Mahler, G. J., Esch, M. B., Tako, E., Southard, T. L., Archer, S. D., Glahn, R. P., et al. (2012) ’Oral exposure to polystyrene nanoparticles affects iron absorption’. Nature Nanotechnology, 7, pp. 264-271.
- Sarkar, B., Bhattacharjee, S., Daware, A., Tribedi, P., Krishnani, K. K., Minhas, P. S. (2015) ’Selenium nanoparticles for stress-resilient fish and livestock’. Nanoscale Research Letters, 10, pp. 1-14.
- Selim, N. A., Radwan, N. L., Youssef, S. F., Salah Eldin, T. A., Abo Elwafa, S. (2015) ’Effect of inclusion inorganic, organic or nano selenium forms in broiler diets on: 2-Physiological, immunological and toxicity statuses of broiler chicks’. International Journal of Poultry Science, 14, 144-155.
- Mroczek-Sosnowska, N., Łukasiewicz, M., Wnuk, A., Sawosz, E., Niemiec, J., Skot, A., (2015) ’In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance’. Journal of the Science of Food and Agriculture, 96 (9), pp. 3058-3062.
- Verma, A. K., Singh, V. P., Vikas, P. (2012) ’Application of nanotechnology as a tool in animal products processing and marketing: An overview’. American Journal of Food Technology, 7, pp. 445-451.
- Dekkers, S., Krystek, P., Peters, R. J. B., Lankveld, D. P. K., Bokkers, B. G. H., Van Hoeven-Arentzen, P. H. (2011) ’Presence and risks of nanosilica in food products’. Nanotoxicology, 5, pp. 393-405.
- Peters, R. J. B., Van Bemmel, G., Herrera-Rivera, Z., Helsper, H. P. F. G., Marvin, H. J. P., Weigel, S., (2014) ’Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles’. Journal of Agricultural and Food Chemistry, 62(27), pp. 6285-6293.
- Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., von Goetz, N. (2012) ’Titanium dioxide nanoparticles in food and personal care products’. Environmental Science and Technology, 46, pp. 2242-2250.
- Amna, T., Hassan, M. S., Yousef, A., Mishra, A., Barakat, N. A. M., Khil, M. S., et al. (2013) ’Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system’. Food and Bioprocess Technology, 6, pp. 988-996.
- Zimmermann, M. B., Hilty, F. M. (2011) ’Nanocompounds of iron and zinc: Their potential in nutrition’. Nanoscale, 3, pp. 2390-2398.
- Donatella, D., Clara, S., Marilena, P., Sossio, C., & Antonella, M. (2013) ’Polypropylene and polyethylene-based nanocomposites for food packaging applications’. In Ecosustainable polymer nanomaterials for food packaging. CRC Press, pp. 143-168.
- Silvestre, C., Cimmino, S. (2013) ’Ecosustainable polymer nanomaterials for food packaging’. New York: CRC Press.
- Brody, A. L., Bugusu, B., Han, J. H., Sand, C. K., & McHugh, T. H. (2008) ’Innovative food packaging solutions. Scientific status summary’. Journal of Food Science, 73, pp. 107-116.
- Johnston, J. H., Grindrod, J. E., Dodds, M., & Schimitschek, K. (2008) ’Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging’. Current Applied Physics, 8, pp. 508-511.
- Shemesh, R., Krepker, M., Goldman, D., Danin-Poleg, Y., Kashi, Y., Nitzan, N. (2015) ’Antibacterial and antifungal LDPE films for active packaging’. Polymers for Advanced Technologies, 26, pp. 110-116.
- Nanocor (2016). http://www.nanocor.com/. Letöltés dátuma: 2016. február 16.
- EFSA (2016). ’European Food Safety Authority Panel on food contact materials, Enzymes, flavourings and processing aids (CEF). Scientific opinion on the safety assessment of the substance zinc oxide, nanoparticles, for use in food contact materials’. EFSA Journal, 14(3), pp. 4408-4416.