Articles

Analysis of A Tilting Table with Parallel Kinematics

Megjelent:
2021-12-30
Szerzők
Megtekintés
Kulcsszavak
Licenc

Copyright (c) 2021 by the authors

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Hogyan hivatkozzuk
Kiválasztott formátum: APA
Tüske, I., & Hegedűs, G. (2021). Analysis of A Tilting Table with Parallel Kinematics. Recent Innovations in Mechatronics, 8(1), 1-5. https://doi.org/10.17667/riim.2021.1/2.
Beküldött 2021-09-24
Elfogadott 2021-12-30
Publikált 2021-12-30
Absztrakt

This paper presents a workpiece moving unit with parallel kinematics, where its kinematic model is described. Based on the Chebyshev-Grübler-Kutzbach mobility equation the mobility properties of the mechanism are examined. Using the modified Chebyshev-Grübler-Kutzbach criterion the number of degrees of freedom of the workpiece tilting table is determined, after this the screw theory will be presented. As the Chebyshev-Grübler-Kutzbach criterion does not take into account the geometrical characteristics of the examined structure, using the screw theory the workpiece tilting unit will be reanalysed, to take geometrical characteristics into account in determining the degrees of freedom of the structure. Finally, the results of the two theories will be compared in the study of the given kinematic model.

Hivatkozások
  1. X.-J.Liuand, J.Wang (2014) Type, Kinematics, and Optimal Design, Springer Tracts in Mechanical Engineering, Parallel Kinematics, vol 2. Springer, doi:10.1007/978-3-642-36929-2_2
  2. S. Staicu,(2019) Matrix Kinematics of Composed Motion, Dynamics of Parallel Robots, Parallel Robots: Theory and Applications, vol 3. Springer, doi:10.1007/978-3-319-99522-9_3
  3. Huang, Z., Li, Q., & Ding, H. (2012) Basics of Screw. Theory. Mechanisms and Machine Science, vol 1. Springer, doi:10.1007/978-94-007-4201-7_1
  4. ROBERT STAWELL BALL, LL.D., F.R.S. (1876) A STUDY IN THE DYNAMICS OF A RIGID BODY. THE THEORY OF SCREWS.
  5. Xiaorong Zhu, Huiping Shen, Chengqi Wu, Damien Chablat, Tingli Yang. (2020) Computer-aided mobility analysis of parallel mechanisms, Mechanism and Machine Theory, Elsevier, 148, 103810. doi:10.1016/j.mechmachtheory.2020.103810
  6. Ming Han, Dong Yang , Baojun Shi, Tiejun Li and Jianbin Feng. (2020) Mobility analysis of a typical multi-loop coupled mechanism based on screw theory and its drive layout optimization, Advances in Mechanical Engineering, Vol. 12(12) 1–9., doi:10.1177/1687814020976216
  7. Huang Z., Li Q., Ding H. (2013) Mobility Analysis Part-1., Theory of Parallel Mechanisms, Mechanisms and Machine Science, vol 3. Springer, doi:10.1007/978-94-007-4201-7_3
  8. LipingWang, Huayang Xu and Liwen Guan (2015) Mobility analysis of parallel mechanisms based on screw theory and mechanism topology. Advances in Mechanical Engineering, Vol. 7(11) 1–13., doi:10.1177/1687814015610467
  9. M.S.Arora. (2016) Review Paper on Screw Theory and its Application in the Field of Parallel Robotics, IJSRD - International Journal for Scientific Research & Development, Vol. 4, Issue 03, ISSN (online): 2321-0613
  10. Huang Z., Li Q., Ding H. (2013) Mobility Analysis Part-2., Theory of Parallel Mechanisms. Mechanisms and Machine Science, vol 4. Springer, doi:10.1007/978-94-007-4201-7_4
  11. Huang Z., Li Q., Ding H. (2013) Constraint Screw-Based Method for Type Synthesis. Theory of Parallel Mechanisms, Mechanisms and Machine Science, vol 9. Springer, doi:10.1007/978-94-007-4201-7_9
  12. Jianguo Zhao, Bing Li, Xiaojun Yang and Hongjian Yu. (2009) Geometrical method to determine the reciprocal screws and applications to parallel manipulators, Robotica, Volume 27, Issue 6, pp. 929 – 940, doi:10.1017/S0263574709005359
Adatbázis logók