Search

Published After
Published Before

Search Results

  • Application of OptiTrack Motion Capture Systems in Human Movement Analysis: A systematic Literature Review
    1-9.
    Views:
    4268

    With the spreading of motion analysis decisions to invest into a new system demand scientific reference applications. The aim of the present systematic review is to reveal the biomechanical scientific applications of OptiTrack motion capture systems and to overview documented usage conditions and purposes. Six major scientific literature databases were used (PubMed, PubMed Central, ScienceDirect, IEEE Xplore, PLOS and Web Of Science). An OptiTrack camera system had to be used for human or biologically related motion capture. A total of 85 articles were included, 4 out of which dealt with the validation
    of OptiTrack systems and 81 utilized the system for biomechanical analyses. The data analysed and extracted from the system validation studies included: description of the validated and the reference system, measured features and observed errors. The data extracted from the utilizing studies also included: OptiTrack application, camera type and frequency, marker size, camera number, data processing software and the motion studied. The review offers a broad collection of biomechanical applications of OptiTrack motion capture systems as scientific references for certain motion studies. The review also summarizes findings on the accuracy of the systems. It concludes that the method descriptions of system usage are often underspecified.

  • Home Compatible Omnidirectional Hovercraft Robot
    1-7.
    Views:
    115

    As robots slowly integrate into home environments, synthesis of navigation, maneuverability and human acceptance is inevitable. This paper introduces a holonomic hovercraft design and the associated omnidirectional controlling algorithm. Hovercraft capabilities were investigated and discussed though design recommendations in relation to a robot compatible environment. The main aim of the design was to achieve better maneuverability, enhanced capabilities of overcoming obstacles, and the elimination of the drift phenomena that is a characteristic of conventional underactuated hovercraft designs, where rear rotor drive exerts thrust in one direction. Due to own inertia and the low friction of the air cushion, the hovercraft slips out in the original direction. Beyond solving this drift problem, another key feature of our design is the capability to be controlled in a global reference frame regardless of its orientation and desired trajectory with the help of a holonomic thruster drive. Orientation control is also implemented by turning the base of the thrusters. The design was implemented on a remote controlled hovercraft robot and proved to have a superior maneuverability over conventional hovercraft designs, thus our research greatly contributes to future human-robot cooperation in the living environment.

  • Android Based Autonomous Mobile Robot
    1-4.
    Views:
    140

    The spreading of mobile robots is getting more significant nowadays. This is due to their ability to perform tasks that are dangerous, uncomfortable or impossible to people. The mobile robot must be endowed with a wide variety of sensors (cameras, microphones, proximity sensors, etc.) and processing units that makes them able to navigate in their environment. This generally carried out with unique, small series produced and thus expensive equipment. This paper describes the concept of a mobile robot with a control unit integrating the processing and the main sensor functionalities into one mass produced device, an Android smartphone. The robot is able to perform tasks such as tracking colored objects or human faces and orient itself. In the meantime, it avoids obstacles and keeps the distance between the target and itself. It is able to verbally communicate wit.

Database Logos