Search
Search Results
-
Fault-tolerant Mechatronic Systems Development: a Biologically-inspired Approach
1-5.Views:115Modern mechatronics embeds sophisticated control systems to meet increased performance and safety requirements. Timely fault detection is a critical requirement especially in safety-critical mechatronic applications, where a minor fault can evolve to catastrophic situations. In such cases it looks a high demand for more reliable, safety and fault-tolerant mechatronic systems development. The alternative to overcome all these bottlenecks was inspired from the biological world. By adapting the remarkable surviving and self-healing abilities of living entities it is possible to develop novel hardware systems suitable to fulfill in all the most demanding high reliability operation criteria’s and requirements. The paper presents a biologicallyinspired computing system based on a Field Programmable Gate Array (FPGA) network developed for high reliability mechatronic applications. By choosing a design strategy relying on a multi-cellular concept which outlines the versatility of biologically inspired technologies, task allocation or reliability problems can be solved with high efficiency. Real-time simulations prove that by implementing methods that imitate biological processes, high performance fault-tolerant and selfhealing hardware architectures can be experimented and tested. The benefits of this approach are also confirmed by experiments performed on a laboratory-prototype hardware platform. The results underline that techniques which imitate bio-inspired strategies can offer viable solutions in high reliability mechatronic systems development.
-
The Effect of Air-fuel Equivalence Ratio Change on the Vibration Components of an Internal-combustion Engine
1-6.Views:98Nowadays the automotive industry and the motor development are one of the most dynamically developing industries. One solution to the diagnostic systems providing reliability is the acoustic and vibration measurement system, which can indicate and predict a variety of malfunctions after signal processing. The purpose of this experiment is to analyze the effect of the air-fuel equivalence ratio on the vibration components of an internal-combustion engine (ICE) which is a part of the in question measurement system. In the focus of the experiments are the analysis of the time signal, its spectra, and the power content of the signal. With the increment of the air-fuel ratio the amplitudes of the measured signal and its spectral amplitudes showed a downward trend as the RMS values. In addition, certain frequency components disappeared during the actuation of the ICE with an electromotor, so the characterization of the combustion could be come to the front.