M. W. Wang, J.; Ellsworth, “Graphene aerogels,” vol. 19, no. ECS Trans., pp. 241–247, 2009.
M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher, and T. F. Baumann, “Synthesis of Graphene Aerogel with High Electrical Conductivity,” J. Am. Chem. Soc., vol. 132, no. 40, pp. 14067–14069, Oct. 2010, doi: 10.1021/ja1072299.
X. Zhang et al., “Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources,” J. Mater. Chem., vol. 21, no. 18, p. 6494, 2011, doi: 10.1039/c1jm10239g.
P. J. Pauzauskie et al., “Synthesis and characterization of a nanocrystalline diamond aerogel,” Proc. Natl. Acad. Sci., vol. 108, no. 21, pp. 8550–8553, May 2011, doi: 10.1073/pnas.1010600108.
P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev., vol. 71, no. 9, pp. 622–634, May 1947, doi: 10.1103/PhysRev.71.622.
G. W. Semenoff, “Condensed-Matter Simulation of a Three-Dimensional Anomaly,” Phys. Rev. Lett., vol. 53, no. 26, pp. 2449–2452, Dec. 1984, doi: 10.1103/PhysRevLett.53.2449.
B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the K point,” Phys. Rev. B, vol. 74, no. 7, p. 075404, Aug. 2006, doi: 10.1103/PhysRevB.74.075404.
K. S. Novoselov, “Electric Field Effect in Atomically Thin Carbon Films,” Science (80-. )., vol. 306, no. 5696, pp. 666–669, Oct. 2004, doi: 10.1126/science.1102896.
S. Stankovich et al., “Graphene-based composite materials,” Nature, vol. 442, no. 7100, pp. 282–286, Jul. 2006, doi: 10.1038/nature04969.
D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, “Mechanical properties of graphene and graphene-based nanocomposites,” Prog. Mater. Sci., vol. 90, pp. 75–127, Oct. 2017, doi: 10.1016/j.pmatsci.2017.07.004.
X. Du et al., “Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates,” Compos. Sci. Technol., vol. 140, pp. 123–133, Mar. 2017, doi: 10.1016/j.compscitech.2016.12.028.
J. Fricke, “Aerogels — highly tenuous solids with fascinating properties,” J. Non. Cryst. Solids, vol. 100, no. 1–3, pp. 169–173, Mar. 1988, doi: 10.1016/0022-3093(88)90014-2.
P. B. Wagh, R. Begag, G. M. Pajonk, A. V. Rao, and D. Haranath, “Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors,” Mater. Chem. Phys., vol. 57, no. 3, pp. 214–218, Jan. 1999, doi: 10.1016/S0254-0584(98)00217-X.
A. C. Pierre and G. M. Pajonk, “Chemistry of Aerogels and Their Applications,” Chem. Rev., vol. 102, no. 11, pp. 4243–4266, Nov. 2002, doi: 10.1021/cr0101306.
S. S. KISTLER, “Coherent Expanded Aerogels and Jellies,” Nature, vol. 127, no. 3211, pp. 741–741, May 1931, doi: 10.1038/127741a0.
G. W. Brinker, C.J.; Scherer, The Physics and Chemistry of Sol-Gel Processing; San Diego, CA, USA,: Academic Press:, 1990.
Y. Hanzawa, K. Kaneko, R. W. Pekala, and M. S. Dresselhaus, “Activated Carbon Aerogels,” Langmuir, vol. 12, no. 26, pp. 6167–6169, Jan. 1996, doi: 10.1021/la960481t.
M. B. Bryning, D. E. Milkie, M. F. Islam, L. A. Hough, J. M. Kikkawa, and A. G. Yodh, “Carbon Nanotube Aerogels,” Adv. Mater., vol. 19, no. 5, pp. 661–664, Mar. 2007, doi: 10.1002/adma.200601748.
A. E. Aliev et al., “Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles,” Science (80-. )., vol. 323, no. 5921, pp. 1575–1578, Mar. 2009, doi: 10.1126/science.1168312.
M. Mecklenburg et al., “Aerographite: Ultra Lightweight, Flexible Nanowall, Carbon Microtube Material with Outstanding Mechanical Performance,” Adv. Mater., vol. 24, no. 26, pp. 3486–3490, Jul. 2012, doi: 10.1002/adma.201200491.