Search

Published After
Published Before

Search Results

  • Monitoring the changes of a suburban settlement by remote sensing
    76-83
    Views:
    80

    Satellite images and aerial photos support settlement surveys and provide valuable information of their physical environment. Aerial photos are excellent tools to overview large areas and simultaneously provide high-resolution images making them efficient tools to monitor built-up areas and their surroundings. Aerial photos can also be used to collect complex spatial data as well as to detect various temporal changes on the land surface, such as construction of illegal edifices and waste dumps. The 10 to 30-meter resolution SPOT and Landsat images are usually insufficient for site specific data collection and analysis. However, the recently available 0.5-meter resolution satellite images have broadened the scope of monitoring and data collection projects. Beyond environmental and urban monitoring, the new available high-resolution satellite images simplify the everyday work of local authorities and will facilitate the development of governmental databases that include spatial information for public utilities and other communal facilities.

  • Sentinel-2 satellite-based analysis of bark beetle damage in Sopron Mountains, Hungary
    33-40
    Views:
    61

    Sopron mountains were affected by bark beetle (Ips typographus) damage between 2017 and 2020, which was surveyed on high-resolution ESA Sentinel-2 satellite images for the period 2017 and 2020 using Mosaic Hub, Anaconda, and Jupyter Notebook web-based computing environments. Biotic forest damage was detected based on vegetation (NDVI) and moisture (MSI, NDWI) indices derived from satellite images. The spatial and temporal change of damage was observed in the image series, resulting in information about the level of degradation and regeneration. In pursuance of GIS processing, 84 forest compartments were compared, which showed in most of the cases (97%) negative interannual change in the index mean values (MSI = - 0.14, NDWI = - 0.2, NDVI= - 0.19) when years compared to each other. The remote sensing-based survey was marked out and validated based on the forest database of the Hungarian Division of Forest of National Land Centre and forest protection damage reports of the Hungarian National Forest Damage Registration System.

  • Comparative analysis of Landsat TM, ETM+, OLI and EO-1 ALI satellite images at the Tisza-tó area, Hungary
    53-62
    Views:
    339

    Satellite images are important information sources of land cover analysis or land cover change monitoring. We used the sensors of four different spacecraft: TM, ETM+, OLI and ALI. We classified the study area using the Maximum Likelihood algorithm and used segmentation techniques for training area selection. We validated the results of all sensors to reveal which one produced the most accurate data. According to our study Landsat 8’s OLI performed the best (96.9%) followed by TM on Landsat 5 (96.2%) and ALI on EO-1 (94.8%) while Landsat 7’s ETM+ had the worst accuracy (86.3%).