Search
Search Results
-
Climate change: Hungary’s perception and how we adopt renewables against it
58-65Views:34The aim of the research is to present the effects of climate change in Hungary, the public opinion on climate change and the related social acceptance of renewable energy sources and the reasons for their adaptation. Previous surveys have shown that the Hungarian population is aware of the dangers of climate change, yet they are less willing to act against either climate change or pollution. Global climate change threatens peripheral regions more than central regions, as several studies have shown. Hungary has so far successfully met its climate targets but is still far from reaching the 2050 climate neutrality target. The financial and economic situation of the Hungarian population does not currently allow them to widely adopt the opportunities offered by renewable energy sources, but those who can afford to invest in the technologies do so primarily for the financial savings, not to fight climate change.
-
Analysis of Climate Variability and Agricultural Productivity in Mizoram, Northeast India
53-64Views:310Mountainous regions are considered highly vulnerable to the affects of climate change. The extent of change and variability of climatic parameters is still unexamined in many remote mountainous areas. This paper aims in understanding the change in pattern of rainfall and temperature for a period of 30 years in Mizoram. The analysis of time series changing trend in climatic variables is carried out by using Coefficient of Variation (CV), Mann-Kendall (M-K) and Sen’s Slope estimator. The analysis reveals that high variation is observed for both the variables in all the decadal, three decadal and seasonal change. The CV analysis shows that the highest seasonal rainfall variation occurs during winter and the highest seasonal temperature variation occurs during spring. Mann-Kendall test shows a significant change in rainfall with November showing the highest negative trend of rainfall. The temperature trend analysis in the study also reveals drastic change of temperature. An understanding of climatic change, trend and variability helps in predicting for better natural resources from the susceptibility of climate change.
-
Analysis of landscape geographic impacts of potential climate change in Hungary
41-50Views:162Change of climate can be a remarkable turning point in the 21st century history of mankind. An important task of landscape geographic research is forecasting environmental, nature protection, land use demands and helping mitigation of disadvantageous processes from the aspect of society. ALADIN and REMO numeric climate models predict strong warming and lack of summer precipitation for the area of Hungary for the period between 2021 and 2100. There is a predicted growth in frequency of extreme weather events (heat waves, droughts hailstorms). Changes have been forecasted using data presented in table 1. For analyses of complex landscape geographic impacts of climate change the area of Hungary have been divided into 18 mesoregions with 5.000-10.000 km2 area each (figure 1). The main aspect of choosing the regions was that they should have homogeneous physical, geographic and land use endowments and, for this reason, they should react to climate change the same way. Relationships between landscape forming factors and meteorological elements examined by us have been taken into consideration. Results of analyses of impacts of the meteorological factors on the changes of relief through the mass movements are presented in this paper. Changes of landscape sensibility of mesoregions to mass movements have been presented in the last chapter for the periods between 2021-2050 and 2071-2100 according to numeric climate models.
-
Climate as a risk factor for tourism
113-125Views:178Weather and climate risk factors for tourism are surveyed and illustrated with regard to the expected climate changes in Hungary. These changes are not at all advantageous and which affect the business in question both directly and indirectly. These are the summer resort tourism (characterised by bioclimatic indices). Green tourism is the next one to characterise, including skiing, mountain climbing and eco-tourism, as well. Here both day-to-day weather extremes and long-lasting effects on the biota (e.g. drought, or inundation for plain-area eco-tourism). Last, but not least the urban (cultural- and shopping-) tourism is presented, since the large towns exhibit their special climate and different risks. The paper intends to specify these meteorological factors and effects also in terms of the different types of touristic activities. The general statements on the effect of weather and climate on tourism are illustrated by a few individual parameters and also by the so called Physiologically Equivalent Temperature. Annual and diurnal course of this parameter are presented, together with various trends in this variable at different sites and in different (hot and cold) extremities of the occurring values. Other examples, helping the tourism industry are presented in various climate conditions of the country. They include high precipitation and high relative humidity information. The paper also lists the possible adaptation measures to extreme events and also their likely changes in time.
-
Population an land cover dinamics of Sundarbans impact zone is Bangladesh
1-13Views:238Sundarbans is the largest mangrove forest of the world that lies in Bangladesh and India. This paper examined the correlation among population dynamics of Sundarbans impact zone (SIZ) from 1974 to 2011; impact of climate change on the forest; and changes in land cover of the forest from 1973 to 2010. Population size of SIZ was increased by 1.6 times between 1974 and 2011, whereas decreased by 2% during 2001 to 2011. During 1973 to 2010, water bodies, barren land and vegetated land reduced by 7.35%, 49.56% and 15.92% respectively; while grass land increased by 228.14% during the same period. But both population size and vegetated land declined during 2001 and 2011. This was due to the landfall of two severe cyclones in 2007 and 2009 through Sundarbans which resulted thousands of human casualties and out migration, and destruction of the forest. In addition, anthropogenic interventions like low flow from Ganges River and policy constraints also contributed to the demolition of Sundarbans. Thus, population growth, climate change and anthropogenic interventions are playing a decisive role to the depletion of forest resources from the Sundarbans mangrove forest.
-
Modelling the effects of long-term urban land use change on the water balance
143-159Views:61The level of land consumption for housing and transport contrasts sharply with both the necessity and the legal obligation to maintain the ecological potential afforded by open spaces to meet the needs of current and future generations in terms of resource protection and climate change. Owing to the increasing intensity of soil usage, in many urban landscapes the soil conditions has deteriorated. The natural filter and run-off regulating functions of soils are impaired or even disappeared altogether by land surfacing. Since such soil functions closely depend on the soil’s biophysical properties, the decline of water balance functionality caused by urbanisation and increasing imperviousness varies. In response to the demand to sustainably secure urban water resources, it needs to be assessed exactly how land surfacing affects the functions concerned. Analysing and evaluating the urban land use change and the respective imperviousness on the long-term water balance ought to improve our general understanding of the water household related impact of urbanisation. Therefore, the aim of this paper is to assess the impact of urban land use change and land surfacing on the long-term water balance over a 130-year trajectory using the example of Leipzig. In particular, attention is to be paid to evapotranspiration, direct runoff and groundwater recharge.
-
Household heating in the light of climate change
53-65Views:40Greenhouse gas emissions resulting from anthropogenic activities play a significant role in climate change. The residential heating should be mentioned one of the main polluting source of greenhouse gases.This paper aims to give a comprehensive view about the amount of CO2 emission as well as objectives and strategies for reduction the GHG emission. In addition, we illustrate the example of an average Hungarian family house (100 m2 ), that biomass-based energy production what extent can reduce the current very high degree carbon dioxide emissions. We prepared investment analysis, as to what kind of ecological and economic benefits may result in heating modernization projects of a four-member family home. Additionally, a calculation method of CO2 emission from heating is demonstrated on the basis of IPPC report (2006); the role of biomass is explained in heating; furthermore I give an overview analysis about the significance of forests for reduction of CO2 concentration.
-
Vegetation changes of Sundarbans based on Landsat imagery analysis between 1975 and 2006
1-9Views:365The Sundarbans in Bangladesh and India is the largest single block of tidal halophytic mangrove forest in the world. This forest is threatened by effect of climate change and manmade activities. The aim of this paper is to show changes in vegetation cover of Sundarbans since 1975 using Landsat imagery. Normalized Difference Vegetation Index is applied to quantify and qualify density of vegetation on a patch of land. Estimated land area (excluded water body) of this forest is 66% in Bangladesh, and 34% in India, respectively. Net erosion since 1975 to 2006 is ~5.9%. In vicinity of human settlement, areal changes are not observed since 1975. The mangrove forest is decreased by 19.3% due severe tropical cyclone in 1977 and 1988. Moreover, the dense forest is damaged by about 50%. However, more than 25 years is taken by Sundarbans to recover from damage by a severe tropical cyclone. The biodiversity of Sundarbans depends to fresh water flow through it. Therefore, the future of Sundarbans depends to the impact of climate change which has further effect to increasing intensity and frequency of severe tropical cyclone and salinity in water channels in Sundarbans.
-
Statistical Indices of Land Use Changes and Nutrients Balance of Tomatoes and Peppers Production in Jordan Valley and Highlands (1999-2019)
65-76Views:222Climate change has caused pressure on water resources in Jordan. This was accompanied by the Syrian refugee crisis during the period 2009 to 2019. This descriptive study was conducted in the University of Debrecen, during the years 2020 and 2021 within the course of sustainable land use by collecting official statistical data from reliable sources in Jordan on the production of tomato, pepper, and paprika during five years 1999, 2004, 2009, 2014 and 2019 to compare the change in land use, crop sown structure, country production, unit area average yield and estimation of unit area pollution with major nutrients. The study showed an increased land used for the production of vegetables by (+ 37.84%) during the period from 2004 to 2014, high productivity per hectare for three crops from 2014 to 2019. Jordan had the highest tomato and paprika crop yields in 2014. The reason is due to the increase in the local and global demand for these crops along with other reasons, which have promoted the use of mass production agricultural techniques, the most important of which is chemical fertilization. Which caused the accumulation of phosphorus and potassium in soils.
-
Is desertification a problem in Hungary?
242-247Views:229The term of “desertification” refers to a land degradation processes of arid, semiarid and sub-humid areas. Although the concept originates from Sub-Saharan Africa, desertification threatens also the area of Hungary. The greatest desertification risk is in the central part of the country, in the Danube-Tisza Interfluve where drought has always been a huge problem for the local society. Aridification processes are mainly due to climate change. Temperature increase and precipitation decrease as well as the increase of the frequency and amplitude of extreme events contribute to the acceleration of desertification risk. Severe or moderate droughts occur in Hungary nearly every year. Drought frequency has increased, primarily in the last decades. Main findings of several research projects of MEDALUS II and III EU Framework projects (experiments on the effects of climate change on vegetation, soils and ground water level) are summarized in the paper.
-
The effect of aridification on dry and wet habitats of Illancs microregion, SW Great Hungarian Plain, Hungary
11-22Views:114By the beginning of the 21st century, investigations aiming landscape history and landscape changes became especially important in the environmental research. The decreasing number of natural areas called the attention of the world to the rapid changes in the landscape caused by human activities and climate change. Certain places are facing with increased problems caused by the sensitiveness of landscapes. In Hungary, in the Danube–Tisza Interfluve a continuous groundwater-table sinking process was observed, as a result of anthropogenic effects of the last century and the consequences of climate change. On the highest part of this mesoregion (e. g. Illancs microregion), the decrease of the groundwater-level has reached 7 metres compared with the 1970s which affected significantly the nature and the local inhabitants as well. This study aimed to investigate the effect of this aridification process on dry and wet habitats of Illancs microregion. It reveals the ongoing processes in the landscape, referring to the previously affecting factors. In case of dry habitats, fragmentation and invasive species play important role as threatening factors. Wet habitats are significantly decreasing, shift of the vegetation zones can be observed. The stands are degraded, their steppification is dominant and can be observed only in the deepest parts of the depressions.
-
Interpolation and 3D visualization of soil moisture
23-34Views:399Adaptation to climate change demands the optimal and sustainable water management in agriculture, with an inevitable focus on soil moisture conditions. In the current study we developed an ArcGIS 10.4. platform-based application (software) to model spatial and temporal changes in soil moisture in a soy field. Six SENTEK Drill & Drop soil moisture sensors were deployed in an experimental field of 4.3 hectares by the contribution of Elcom Ltd. Soil moisture measurement at each location were taken at six depths (5, 15, 25, 35, 45 and 55 cm) in 60-minute intervals. The model is capable to spatially interpolate monitored soil moisture using the technique. The time sequence change of soil moistures can be tracked by a Time Slider for both the 2D and 3D visualization. Soil moisture temporal changes can be visualized in either daily or hourly time intervals, and can be shown as a motion figure. Horizon average, maximum and minimum values of soil moisture data can be identified with the builtin tool of ArcGIS. Soil moisture spatial distribution can be obtained and plotted at any cross sections, whereas an alarm function has also been developed for tension values of 250, 1,000 and 1,500 kPa.
-
Monitoring temperature patterns at selected world heritage sites in Egypt using high resolution WorldClim data
42-58Views:531Long term temperature patterns helps in assessing changes in the climatic conditions of an area and climatic changes poses a major challenge to the world heritage sites whether it is natural or cultural. Therefore in this study using maximum and minimum temperature data for the period 1960-2021 downloaded from WorldClim 2.1 calculation of mean temperature is done in QGIS environment for the selected UNESCO world heritage sites of Arab Republic of Egypt. WorldClim 2.1 provides finer resolution gridded data downscaled from Climate Research Unit. Trend analysis using linear regression and Mann-Kendall method and Sen’s Slope estimate is used to understand the patterns of mean temperature at all the selected sites. The study reveals that mean temperature at all the selected sites is increasing but since 1990 the sites which are located geographically in lower Egypt are witnessing rapid increase in mean temperature compared to the sites located in upper Egypt which historically witnessed more temperature due to its geographical milieu. This study can help in stimulating the utility of geospatial data in understanding the changes in climatic parameters in relation to world heritage sites. Moreover it can serve as foundation upon which detailed longitudinal site specific investigation can be done.
-
Spatial distribution of vegetation cover in Erbil city districts using high-resolution Pléiades satellite image
10-22Views:243Green spaces are playing an essential role for ecological balance and for human health in the city as well. They play a fundamental role in providing opportunities for relaxation and enjoying the beauty of nature for the urban population. Therefore, it is important to produce detailed vegetation maps to assist planners in designing strategies for the optimisation of urban ecosystem services and to provide a suitable plan for climate change adaptation in one fast growing city. Hence, this research is an investigation using 0.5 m high-resolution multispectral Pléiades data integrated with GIS data and techniques to detect and evaluate the spatial distribution of vegetation cover in Erbil City. A supervised classification was used to classify different land cover types, and a normalised difference vegetation index (NDVI) was used to retrieve it for the city districts. Moreover, to evaluate the accessibility of green space based on their distance and size, a buffer zone criterion was used. The results indicate that the built-up land coverage is 69% and vegetation land cover is 14%. Regarding NDVI results, the spatial distribution of vegetation cover was various and, in general, the lowest NDVI values were found in the districts located in the city centre. On the other hand, the spatial distribution of vegetation land cover regarding the city districts was non-equal and non-concentric. The newly built districts and the districts far from the Central Business District (CBD) recorded the lowest vegetation cover compared with the older constructed districts. Furthermore, most of the districts have a lack of access to green spaces based on their distance and size. Distance and accessibility of green areas throughout the city are not equally distributed. The majority of the city districts have access to green areas within radius buffer of two kilometres, whereas the lowest accessibility observed for those districts located in the northeast of the city in particular (Xanzad, Brayate, Setaqan and Raperin). Our study is one of the first investigations of decision-making support of the spatial planning in a fast-growing city in Iraq and will have a utilitarian impact on development processes and local and regional planning for Erbil City in the future.
-
Rainfall Dependency and Water quality Assessment of springs of three villages of Rudraprayag District: An analysis of veins of Uttarakhand Himalaya
36-47Views:83A spring is a crevice in the substrate that forms naturally and allows water to pour out directly from the earths subsurface. Every major river in the country has a system of springs that serve as a symbolic representation of its source. But this very fundamental source of many resources is in peril. The problem is mainly related with the reduced discharge rate of water from the spring. The reason of truncate discharge rate is variability in the rainfall pattern in the recharge area due to the climate change over the years.To ensure the quality and security of the public's water supply, regular quality assessments of drinking water sources are required. In consequence, this study not only analyse the rainfall dependency of springs but also evaluated the spring water quality for drinking, using water quality index, in three villages located in Jakholi block of Rudraparayag district, Uttarakhand. The ten foremost physiochemical elements that regulate water quality—Nitrate, Fluoride, Iron, pH, Turbidity, Chloride, Residual Chlorine, Magnesium, sulphate, and Hardness—were investigated to ensure compliance with guidelines defined by the Bureau of Indian Standards IS: 12500:2012. After examining the data, it became apparent that all of the indicators pointed to acceptable water quality, making it ideal for drinking. However, because of its low discharge and great reliance on rainfall, its position is getting more detrimental.