Search
Search Results
-
Matching Nutrient Requirements of Farmed Red Deer on Pasture. International and National Experiences: Papers presented at the „Timely questions in grassland and game management” scientific conference (Hungarian Academy of Sciences – Kaposvár University, 18-19 May 2006)
7-12Views:71The authors summarize the factors influencing the nutritional value of grasses which constitute the dominant proportion of pasture biomass, and emphasize the percentage proportion of leguminous species. Interactions are discussed between the phenological status of grasses, digestability, metabolic energy requirements of deer and their voluntary intake. The very often neglected factor of water awailability on feed effciency in red deer farming is stressed. Some data are presented considering the research results obtained at the red deer research farm of the University of Kaposvár.
-
The impact of production factors on the yield formation of grasses of various exploitation
13-18Views:138The lawn – following the forest – is the best manner of land use. 10.75 percent of Hungarian territory is grassland. 90-95 percent of the grass’s root system can be found in the upper 10 cm layer of the soil therefore and because of the large evaporating surface the grasses have a great water demand and weather sensitivity. Beside the nutritional ability and some extreme properties of soil (for ex. great salinity) there is an influence on formation of the grass-type and the yield. In our experiments the sites were utilised 2, 3 and 4 times yearly. At two sites for four years (2006-2009) and at one site for two years (2009-2010) the quantity and the distribution of the yield as well as other parameters were examined, which are not reported in this paper. This experiment is a part of a climate research project run at 27 sites in Austria. The laboratory analyses were carried out uniformly in the LFZ Raumberg- Gumpenstein Research Institute. The most important results of this study are the following: The productivity of the grass type formed on the Little Cumania lowland is very limited. In case of drought there was the highest yield decrease and at the same time in case of good precipitation there was the smallest increase of yield. The effect of grass utilization by late first cut at the poorestsoil site was very unfavourable. At the grass sites of better quality, the utilization manner of 3 or 4 growth, resulted in a better adaptation to the climatic extremities.
-
Effect of fertilization on the mineral element uptake of an established all-grass sward 4.
3-10Views:57The effects of different N, P and K supply levels and their combinations were examined on the mineral element uptake of an established all-grass sward with seed mixture of eight grass species in the 28th year of a long term fertilization field experiment set up on a calcareous chernozem loamy soil. The lay-out and method of the trial as well as the fertilizer responses on the hay yield, nutritional values and element content were published elsewhere (Kádár, 2005, 2005a; Kádár és Győri, 2005). The soil of the growing site contained around 3% humus, 5% CaCO3, 20-22% clay in the ploughed layer and was originally, moderately well supplied with available K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4Nx4Px4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m, the area was prone to drought. In 2001, however, the area had satisfactory amount of 621 mm precipitation with a fairly good distribution. The grass was established on 21. September 2000. The main results and conclusions can be summarised as follows:
1. As a function of NxP positive interactions the element uptake of the 1st cut hay expressed as mean of K treatments increased between the N0P0 control and the maximum N3P3 levels as follows: K 62-190, N 45-218, Ca 16-51, S 5-24, P 4-24, Mg 4-16, Na 0.5-5.0 kg/ha; Mn 282-968, Sr 35-170, Zn 32-73, Ba 29-55, B 18-44, Cu 8-40 g/ha. The uptake of Ba increased from 23 to 62 g/ha, that of Ni from 1.5 to 8.9 g/ha as a result of KxP positive interactions. Uptake of Mo measure on K0P0 soil, however, dropped from 1.6 g/ha to 0.4 g/ha on the K3P3 soil as a function of negative KxP interactions.
2. The 2nd cut hay harvested on 9th October 2001 showed only N-effects. The hay yield measured on N-control soil was 1.0 t/ha while on 300 kg/ha/yr N-treatment 3.9 t/ha. The uptake of Fe, Ba and Mo increased 2-fold; uptake of Ca, S, P, Sr, Zn and Co 3-4-fold, uptake of K, N, Mg, Mn, Ba and Cu 5-6-fold, while uptake of Na 33-fold with the maximum N-rate, compared to the N-control and as means of PK treatments.
3. The 2 cuts together gave on the unfertilised control 3 t/ha, while on the N3P3K3 maximum supply level 13 t/ha hay yield. The uptake of Fe, Cr, B, Ni, Mo and Co increased 2-3 times, uptake of Ca, Mg, Mn, K, Zn, Ba and Cu 5-6 times, uptake of S, Sr and P 7-8 times, uptake of N 10 times, while uptake of Na 16 times on the maximum N3P3K3 supply levels, compared to the unfertilised control. The maximal mass of uptaken K and N made up 388 kg/ha, Ca 80 kg/ha, S 49 kg/ha, P 42 kg/ha (96 kg/ha P2O5), Mg 24 kg/ha in 2001.
4. To have 1 t of air-dry hay it was used by grasses as a mean of 25 kg K (30 kg K2O), 20 kg N, 6 kg Ca (8-9 kg CaO), 2-3 kg S, 2 kg P (5 kg P2O5) and 2 kg Mg (3-4 kg MgO). For microelements: 300 g Na, 200 g Fe, 120 g Mn, 100 g Al, 16 g Sr, 13 g Zn, 8 g Ba, 5 g B, 5 g Cu, 1-2 g Ni, 1 g Mo, 0.2 g Cr and 0.1 g Co. The As, Hg Cd, Pb and Se were under detection limit of 1 g. Data may serve for assessing the nutrient demand of all-grass sward. -
Monthly changes in the production and content values of wet Hungarian gray cattle pasture and the relationship with species richness
19-28Views:133Grassland management tests were performed on different grazing loaded gray cattle pasture and hayland areas 4 times (April, May, June, September) during the grazing season in Tapolca-basin. 5-5 pieces of 2×2 m samples were examined on each sample area, prepared according to the Braun-Blanquet method (1964) in April, May, June and September and with this, we also measured the amount of biomass and its content.
Based on results additional pasture had the largest gazing livestock carrying capacity but it had the weakest feed quality as well. During grazing season due to ongoing livestock grazing, species composition has changed the most in case of pasture and the number of species was the greatest here as well. Proportion of grasses declined in parallel with the amount of legumes, which grown till late summer.
Nutrient content of pasture forage was the most appropriate because of high crude protein and less crude fiber content. Grazing for 34 days/year was not enough in case of additional pasture where Festuca arundinacea had the largest coverage. This is reflected in low number of species richness and small nutritional values of sample areas. For sedge rich low-lying areas mowing utilization is the most effective.