Search

Published After
Published Before

Search Results

  • Regulation in Hungary of the Use of Waste Water and Sewage Sludge in Agriculture
    143-149
    Views:
    138

    Regulating the use of waste water and sewage sludge in agriculture in such a way as to prevent harmful effects on soil, vegetation, animals and man.
    In European Union there is a Council Directive (86/278/EEC) on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture.
    In the enlargement process of the European Union the Hungarian Government created a new rule (50/2001. (IV. 3.) Government regulation) which regulate using of waste water and sewage sludge in agriculture. This Hungarian rule is legal and reconcilable with the Council Directive.
    The Regulation lays down limit values for concentrations of heavy metals in the soil, in waste water, in sludge and for the maximum annual quantities of heavy metals which may be introduced into the soil.
    Waste water, sludge and soil on which it is used must be sampled and analysed.
    Sewage sludge must be treated for six months before being used in agriculture.
    The use of waste water and sludge prohibited on grassland, on nature reserved areas, in ecological farming, and soil in witch fruit and vegetable crops are growing, with the exception of fruit trees.
    The states soil conservation authority must keep records registering the following:
    – the quantities of waste water and sludge produced;
    – the composition and properties of sludge;
    – the type of treatment carried out;
    – the names and addresses of the recipients of the sludge and places where the sludge is to be used.
    The Government every four years must prepare a consolidated report on the use of sludge in agriculture, specifying quantities used, criteria followed and any difficulties encountered. This report must be forwarded to the Commission.
    Last but not least in the light of Member States reports, the Commission will if necessary submit appropriate proposals for increased protection of the soil and the environment.

  • Assessment of energy generated by biogas production in the educational industrial unit of the University of Szeged, Faculty of Agriculture, with special regard to biomass originating from agriculture and the food industry
    137-140
    Views:
    103

    The importance of waste treatment is increasing. Environmental aims are the main driving force. Stricter regulations for landfills lead to the development of alternative treatment methods for waste. For agro-mechanical research, wastes from animal rearing and the food industry, secondary-tertiary biomass, is of deep concern. Available technology is versatile and relatively simple to use as a reliable and effective means of producing a gaseous fuel from various organic waste. The most common application has been the digestion of animal dung, agricultural, and food-industrial waste. This was studied by our department in our pilot farm of our Faculty. The 50-dairy cow, family sized model farm was built in the summer of 1991, as a result of a Dutch – Hungarian cooperation, on the property of the Faculty. The new pig farm, with 30 sows, and the new goat farm, with 100 nannies, was given to the Faculty on 25 April 2001. On the basis of livestock data, the annual dung production and the producible energy were determinate. The energy was calculated by biogas production coefficients in literature.

  • Novel Applications of Microwave Techniques in the Food and Environmental Industries
    29-34
    Views:
    102

    During the microwave processing, despite the conventional heating, the material heats consistently inside. This property of microwave is utilized by drying and dehydration processes. The thermal sensitivity of raw materials of food industry requires development of gentle, fast and controllable technologies, which is realizable by means of combination of conventional and microwave techniques. The other important application area of the microwave technique is food industrial practice is enhancing the microbial safety of products, mainly by pasteurization processes. In recent time the strict environmental regulation necessitate developing more effective treatment of wastes, waste waters and sewage sludge. Because a part of these techniques are heat and power demanded, the microwave technique may be an alternative process in execution of sludge conditioning, drying or gasification and pyrolysis.

  • Examination and statistical evaluation of physico-chemical parameters of windrow composting
    33-38
    Views:
    251

     

    The treatment and utilization of plant and animal waste and by-products from agriculture is very diverse. Traditional environmental management practices for waste management have been retained through soil conservation and the applied of recycle degradable organic substances in soil. The management of by-products from agriculture (animal husbandry) is important because a closed loop can be created to utilize by-products (manure, feathers) from the production of the main product (eggs, meat, milk) and to form a raw material for a new product. It is important to treat the resulting by-products, especially deep-litter manure, as it has served as a basis for compost-treated manure to develop an organic-based, soil-conditioning product line. Poultry manure by itself is not suitable as a substrate for aerobic decomposition, so it has to be mixed with other substances (zeolite, bentonite, soil), because of its high nutrient capacity, it is an acidifying substance.

    The aim of this study was to compost the mixture of poultry manure and hen manure by the addition of zeolite and to monitor the composting process. It was also our aim to statistically determine the effect of the zeolite on parameters describing the composting process.

    The windrow composting experiments were set up in the composting area of the University of Debrecen, Institute of Water and Environmental Management. The composting experiment was 62 days long, during which the main parameters describing the composting process were continuously monitored: temperature (°C), moisture content (w/w%), electrical conductivity (mS/cm), organic matter content (w/w%), examination of nitrogen forms (w/w%). In this study, three factors were investigated: temperature, humidity, and pH. For statistical evaluation, R software and RStudio user interface were used. We developed a repeated measurement model, in which the fixed and random effects were determined for our parameters under study, and the resulting relationships were shown on interaction plots.

    Based on our results, the temperature of the prisms has become independent of the ambient temperature and the composting stages can be separated in both the control and the zeolite treated prisms. In the repeated measurement model, we proved that treatment, time and treatment: time interaction were significant at both temperature and pH.

  • Analysis of aerobic biological waste treatment methods especially in the case of composting
    33-37
    Views:
    165

    In recent years the regulations of the EU unambiguously determine that the biodegradable wastes should be used in agriculture. The characteristics of the organic wastes in most cases make the direct utilization impossible, they need pre-treatment before use. One treatment solution of these wastes is composting. During composting the organic wastes lose their hazardous characteristics and we gain a final product, the compost, which can be used in agriculture as organic fertilizer. The main conditions of effective composting are the follow and understand of the degradation process. During our research we examined different measuring methods (gas concentration and reflectance measurements, temperature mapping) that makes a cost and time effective possibility to directly analyze the degradation.

  • The effect of different compost rates on the yield of ryegrass (Lolium perenne L.)
    95-98
    Views:
    131

    Protection of natural resources and sustainable natural resources management are essential for the long-term survival of humanity. This makes necessary nowadays the development of environmentally conscious living and spread of that in the future. The amount of organic waste materials, produced during human activities, could be decreased by composting instead of dispose them in landfills. Applying appropriate treatment technology and additives, the compost could be used as fertilizer for horticultural crops and it could increase the easily available nutrient content of soils. Compost utilization prevents nutrient deficiencies and by using the optimal rate, we could reach significant yield increases.

  • Identification of environmental costs for agricultural companies – methodological questions and problems
    177-183
    Views:
    91

    It is the consensus in the economic literature that corporate leaders do not know accurately the magnitude of environmental costs in their firms, and this lack of information is often a barrier to making environmentally-friendly decisions. For this reason, an important task of environmental accounting is identification of these costs, and a more realistic distribution of them among the products.
    In this paper, we carried out identification of costs and expenditures for Hungarian agricultural companies. 
    We have dealt with this theme previously, but without detailing the related methodological questions. Detailed discussion is necessary because of the novelty of the subject (environmental accounting for agricultural firms).
    Therefore, we elaborate the following questions: scope of determination of environmental costs and expenditures; methods for quantifying specific items; technique for their accounting. We also attempt to confront different viewpoints in the literature. Differences in accounting found between companies investigated are also presented.
    The importance of our investigation is related to the significant increase in the number of environmental statutes that concern agricultural companies (e.g. rules for waste treatment,  environmental taxation, introduction of charges and fees, regulation on liquid manure). Following these regulations puts an increasingly significant burden on the companies; therefore, the quantifications of environmental cost items has a growing
    importance.

  • Investigation of the impacts of the by-product of sewage treatment on some characteristics of maize in the early growth stage
    77-82
    Views:
    73

    The use of sewage sludge on arable land has been widespread for many years. This by-product, treated as waste, can provide valuable nutrients to the soil, but the applied amount of sewage sludge to arable land is limited. The possibility of application of sewage sludge is essentially determined by the composition of the sludge. The goal of the experiment was to demonstrate that the physiological, morphological, and biochemical parameters of maize (Zea mays L. cv. Armagnac) linearly change with increasing concentrations of sewage sludge (25%, 50%, and 75% as m/m%). The experiment was set up in a glasshouse. The following parameters were investigated: plant height, relative chlorophyll content, photosynthetic pigments (chlorophyll-a, chlorophyll-b, carotenoids), and leaf proline and malondialdehyde (MDA) content, and PS II quantum efficiency in the 3-leaf stages of the plants. Sewage sludge applied in lower doses had a beneficial effect on the initial growth of maize. The relative chlorophyll content was significantly higher in all treatments compared to the control. There was no significant difference in the maximum quantum efficiency of PS II reaction centers among the treatments. In this experiment, different concentrations of sewage sludge treatments had different impacts on the MDA and proline content of maize leaves. The proline content was significantly higher in all treatments, while the MDA content did not change significantly compared to the control.