Search

Published After
Published Before

Search Results

  • Biomethane production monitoring and data analysis based on the practical operation experiences of an innovative power-to-gas benchscale prototype
    399-410
    Views:
    419

    Power-to-gas (P2G) is referred to technologies that convert carbon dioxide into methane. Both bio- and chemical catalysts may be used for conversion purposes. One of the most disruptive biotechnologies was developed by the University of Chicago (IL) (publication number: EP2661511B1), using a robust, highly selective, patented strain of Archaea. Electrochaea GmbH has developed an innovative bench-scale P2G prototype unit, which uses this highly efficient Archaea strain, specialized components and specifically developed control strategies. The structure and the components of the prototype are equivalent with the functional parts of the currently largest commercial scale biomethanation BioCat plant located in Avedøre, Denmark (www.biocat-project.com). Power-to-Gas Hungary Kft. has committed to further develop this innovative technology. The first steps of this development have been taken by operating the benchscale unit and analyzing the data of the operating periods.

    The prototype is operated based on weekly campaigns. During continuous operation, H2O is generated as a by-product of methane. Therefore, approximately 200 ml of biocatalyst is discharged each day and concentrated media containing macro and micronutrients are injected into the reactor to maintain media composition. The laboratory staff records all gas composition data each morning. The gas composition is measured every 12 minutes by an Awite AwiFlex Cool+ gas analyzer. Within this article, we analyze the collected datasets containing more than 12 000 records and present the first practical experiences of the operations of the innovative power-to-gas bench-scale prototype.

    The analysis of the collected gas composition data of the product gas already provides important data for modelling the commercial-scaled processes. The average value of VVD was about 40 l/l/d in the period under review. Further increase of the methane content can be achieved by introduction of higher mixing energy and by increasing pressure levels in the bioreactor (as demonstrated in the BioCat plant – data not shown here) – both of which are strategies envisioned for the commercial plant. In routine activities (turn on, shut down, continuous operation) we could verify the high robustness of the biocatalyst and the base connection between the registered datasets and performed test results.

  • Element content analyses in the Institute for Food Sciences, Quality Assurance and Microbiology
    203-207
    Views:
    144

    The role of chemical elements to ensure and promote our health is undisputed. Some of them are essential for plants, animals and human, others can cause diseases. The major source of mineral constituents is food, drinking water has a minor contribution to it, so the knowledge of elemental intake through food is crucial and needs continuous monitoring and by this way it promotes the food quality assurance and dietetics.
    With the evolution of spectroscopic methods increasingly lower concentrations could be determined, so the elemental composition of a sample could be more precisely and fully described. Due to the results the gathered knowledge up to the present is supported and new observations can be done helping us to understand such complex systems as biological organisms are.
    The quality of a food is determined by the full process of its production, consequently it starts with agricultural production so elemental-analysis usually cover the whole soil – plant – (animal) – food chain, by this way the „Fork-to-Farm” precept is true in elemental analysis field also.
    The history of elemental analysis in the University of Debrecen, Centre for Agricultural and Applied Economic Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Processing, Quality Assurance and Microbiology goes back to 1980s when the so called Regional Measurement Central gave the background for research. The continuous deployment resulted in an obtain of an inductively coupled plasma atomic emission spectrometer (ICP-AES) in 1988, which extended the scope of examinations due to its excellent performance characteristics
    compared to flame atom absorption (FAAS) and flame emission spectrometers (FES). The instrumental park retain up to date correlate to the developing analytical techniques due to acquiring a newer ICPAES in 1998 and an inductively coupled plasma mass spectrometer in 2004 – which sensitivity is three order of magnitude better compared to ICP-AES. The Institute supports the work with its own ICP-AES and ICP-MS since 2011. 

  • Application of advanced environmental assessment methods in orchard management
    221-225
    Views:
    151

    Our reseaches were carried out in apple and pear orchards at Farm and Regional Research Institute in Pallag of the University of Debrecen and Pear Gene Reservoir in Újfehértó. Aim of this study is to interpret and analyse field studies with the aim of a GIS based database. Furthermore, beside field measurements, airborne and field hyperspectraldatacollection and analysis were also made to facilitate special watermanagement and irrigation related surveys. The integration of unified, geoinformatics systems with high spatial resolution and calibrated airborne hyperspectral data are appropriate tool for decision support systems, which support the continuous update and actualization of the changing cropping data, the analysis of cropping results in a unified complex data system, the acquiring of agro environmental subsidies, the establishment of monitoring system, and the optimization of irrigated fruit production.

  • Decreasing Energy and Water Use in the Meat Industry
    24-28
    Views:
    78

    The technology supervisions are needed from time to time in order to involve the new research results, experience, new technologies and equipments organising principles into the production and to make it cheaper and with less expenditure to increase the profitability and competitiveness. In the course of our investigation we aimed the analysis of the traditional technologies and improving of it. In this article we detail the heat treatment curing process. We applied the principles of experimental design for the determination the main influencing parameters in the processes. Then we made simulations and modelling in seeking for the environmentally better technology programs. We developed a method for measuring the temperature development of products with small diameter using the similarity theory in unit operation. In the course of the analysis of the heat treatment processes we could state that the heat treatment time can be reduced significantly by decreasing the size of the product and choosing the right ratios among the surface heat transfer intensity, ambient temperature and involving the lethality obtained during the cooling phase. The total sparing were about 10-20%. We solved the problem associated with the sensor placement error using a plastic material (metamid). We establish a curve between the real product temperature and plastic rod temperature by which the monitoring of the process became more accurate. We determine the size modification for different product sizes. In case of curing we observed very similar phenomena. For the determination of the diffusion coefficient we adopted the Ball-method not using in this field till today. We could reduce the excess saltiness and loss of NaCl with about 5%.

  • The Role and Significance of Soil Analyses in Plant Nutrition and Environmental Protection
    3-8
    Views:
    98

    Hungary has a rich history of soil analyses and soil mapping. Our main tasks today are the preservation of soil fertility as well as balancing the goals of production and environmental protection. The main requirement of agricultural production is to adapt to ecological and economic conditions.
    In a series of consultative meetings in the past seven years, representatives from Central and Eastern Europe have analyzed nutrient management practices in their respective countries. According to a joint memorandum agreed upon in 2000, in the countries awaiting accession, the quantity of nutrients used per hectare is considerably smaller than the Western-European usage targeted through special subsidies. The current low nutrient usage contradicts the principles of sustainability and that of the efficient use of resources, jeopardizing soil fertility.
    In Hungary, the use of inorganic fertilizers underwent a dynamic development, which manifested itself in an almost tenfold usage growth between 1960 and 1985. This growth slowed down somewhat between 1985 and 1990 and then reduced dramatically after 1990, reaching record lows at the usage levels of the 60s. The nutrient supply has had a negative balance for the last 15 years.
    The increasing and then decreasing usage trends can equally be detected in the domestic yield averages of wheat and corn as well as in the nutrient supply of soils. Yields were the largest when usage levels were the highest, and decreased thereafter. Draughts have also contributed to smaller yields. The dramatic decrease in the use of inorganic fertilizers when adequate organic fertilizers are lacking endangers our soils’ fertility.
    About 50% of soils in Hungary are acidic. Acidity is mostly determined by soil formation, but especially on soils with a low buffering capacity, this acidity may intensify due to inorganic fertilizers. Sustainable agriculture requires the chemical improvement of acidic soils. According to their y1 values, the majority of our acidic soils need to be improved. This chemical soil remediation is required in 15% of the acidic soils, while it’s recommended for another 20% of these soils.
    Results of the analyses conducted in the framework of the soil-monitoring system set up in Hungary in 1992 show that in 95% of the analyzed samples, the toxic element content is below the allowable limit. Cultivated areas are not contaminated; toxicity above the legal level was found only in specific high-risk sampling areas: in the vicinity of industry, due to local overload. The basic principle of sustainable agriculture is to preserve soil fertility without undue strain on the environment. The intensity of the production needs to be considered according to the conditions of the site; i.e.; nutrient management needs to be site-specific. It is recommended to differentiate three types of cultivated land in terms of environmental sensitivity: areas with favorable conditions, endangered areas, and protected areas, and then to adopt nutrient management practices accordingly. To meet all the above-mentioned goals is impossible without systematic soil analysis. Tests conducted by the national monitoring system cannot replace regular field measurements.

  • Significance of risk assessment metric in audit of financial statements and reports
    215-225
    Views:
    96

    Management and decision-support of today’s businesses require design and application of management reports based and high-end controlling systems. One of the main source of information for controlling systems is financial accounting that should be designed to support planning, controlling and monitoring systems. Financial and accounting information is essential for decision making support of organizations. Therefore
    eligible assurance is needed that these information are true and fair. Internal and external financial audits as assurance qualifiers are linking to the controlling systems through assurance. Weaknesses of and threats to controlling systems shall be recovered and communicated to the management during qualifying process. Recovering of threats should be based on risk analysis, assessment. In this study I would like to present some methods and tools of risk assessment of financial reports, statements and a way on they can be further developed.

  • Plant clinic in Nepal: An overview
    5-10
    Views:
    126

    Plant clinics play an important role in supporting farmers in growing healthy crops and achieving higher productivity in Nepal. The development and operation of plant clinics in Nepal are assessed in this study through a comprehensive analysis of the institution via literature review and interaction with key stakeholders. The plant clinic approach of the agriculture extension system started in Nepal in 2008, followed up with engagement with CABI and the Government of Nepal. Enhancement of farmers' knowledge and skill, encouraging sustainable farming methods, and ultimately increasing crop yields are the impact of plant clinics. However, there are some challenges faced during the implementation of plant clinics in the existing agricultural extension systems. In Nepal, the plant clinics are primarily operated by agricultural technicians with expertise in plant protection, as well as IPM farmer facilitators and community business facilitators after attending an intensive plant doctor's training. Plant clinics have been integrated into the agricultural extension system by agro-advisory service provider of the government of Nepal. Despite institutionalisation, policy support needs to be strengthened to ensure the sustainability of the different components of the (e.g., data management, validation, monitoring, localised content, etc.) plant clinic in Nepal.

     

  • Usage of different remote sensing data in land use and vegetation monitoring
    7-12
    Views:
    153

    The use of remote sensing in forest management and agriculture is becoming more prominent. The rapid development of technology allowed the emergence of database suitable for precision application in addition to the previously used low-resolution and low data content images. The high resolution, hyperspectral images are not only suitable for separating the different land use categories and vegetation types but also for examining the soil characteristics and biophysical features of plants (Blackburn and Steel, 1999; Condit, 1970). We processed a multispectral satellite image (Landsat 7 ETM+) and a hypespectral areal image (DAIS 7915) about a farm on the plains and evaluated the different image classification methods. During our examinations, we examined the geometrical and radiometrical characteristics of images first, then assigning the training areas, we determined the spectral characteristics of land use categories. We performed a multispectral analysis for checking land use, where we compared controlled and uncontrolled classification systems to check their reliability. We used areal and spectral reductions to make the classifications more accurate and to reduce the length of calculations.

  • The possibility of use of the 0,01 M CaCl2 and Baker- Amacher extractants for the determination of plantavailable potassium
    7-15
    Views:
    87

    The Hungarian fertilizing recommendation systems use AL soil test for the evaluation of potassium supply. The 0.01 M CaCl2 is a definitely milder extractant, it extracts the easily soluble and exchangeable potassium amount. Its European introduction was already taken into consideration in 1994. The research project on this topic is started in several european countries, also in Hungary at the Department of Agricultural Chemisty of Agricultural University of Debrecen. Another advantage this multielement method is that the different element-ratios can also be calculated.
    The Baker-Amacher extractant’s principle is that it contains a known amount of K, P, Mg in the CaCl2 solution. During the soil extraction adsorption and desorption process take place, so the adsorption or desorption can be calculated from the original and the final concentrations.
    In this paper we introduce the results of comparing analysis of the samples (n=630) from Soil Information and Monitoring System. Our aim was to measure the use of new extractants beside conventional extractant (AL) for the evaluation of K-supply would be reasonable.
    It can be stated that there is a medium close relationship (r=0.75) between AL-K and 0.01 M CaCl2-K. My calculations confirmed the results of  former examinations, and proved that the two extractants don’t extract and change the same rate of K-fractions. We found that regression  between 0.01 M CaCl2 and AL depend on texture classes, pH classes, amount of lime, and organic matter content of soils.
    Comparing the relations between AL and Baker-Amacher we find relatively loose correlation (r=0.45). We stated that there are K-fixing soils among soils considered to be well supplied with potassium by AL. This might be caused by the high amount of mineral clay and the quality of mineral clay. We stated that the dK averages show that the Hungarian nutrient-supply categories characterize generally well K-supplement of soil.
    It can be stated that it would be necessary to use new extractants to specify evaluation of plant available K. We found that the 0.01 M CaCl2 and Baker-Amacher extractants could complete usefully the AL procedure and could help effective potassium fertilization.

  • Preliminary studies to evaluate the use of spectral data in monitoring of apple orchard parameters
    37-41
    Views:
    134

    The introduction/application of precision agricultural technologies has more important role in various fruit growing sectors among others apple growing. Remote sensing methods can detect electromagnetic waves where the green colour of the leaf is responsible for the chlorophyll content. The absorption of chlorophyll is in the wavelength range of 450–670 nm. Samples of apple tree leaves were taken on a weekly basis from the apple orchard at Horticultural Unit of Pallag on University of Debrecen in 2019 summer. Our studies were performed on 2 cultivars (Early Gold, Golden Reinders) and the samples were processed using 2 methodologies: a non-destructive spectral method and spectrophotometric method chlorophyll and carotenoid contents were calculated, which were created into some groups and compared with the spectral values. When the plant begins to lose strong green colour and turns yellow spectral measurements show that chlorophyll content decreases as the proportion of chlorophyll-carotenoid in the plant changes.  In case of grouping into intervals, it can be observed that as the chlorophyll content increases the reflectance value decreases continuously due to the strong absorption. Based on the results, close relationship between the pigments can be detected.

  • Comparative analysis of sample preparation methods to determine the concentration of arsenic in soil- and plant-samples
    167-170
    Views:
    200

    Arsenic contamination of the fields and groundwater is a global problem. Alföld is the most affected area in Hungary. Irrigation witharsenic contaminated water, and crop production on the contaminated soil can cause a food safety problem, because arsenic is easy taken up by the cell of the plant roots. To prevent this, very important to monitoring the arsenic content of soils and plants. Inductively coupled plasma mass spectrometry (ICP-MS) is a fast, easy method to determined the concentration of minerals in the case of plant and soil samples The analytical methods can give reliable, results if the analytical process, including the sample preparation method, is the best. The objective of this study was to compare 3 type of sample preparation method which was dry ashing, wet digestion in open system, and microwave digestion. As a result of our experiement shows the microwave digestion is the appropriate method to determined the arsenic content of soil samples. In the case of plant samples we can use wet digestion in open system or microwave digestion as a samle preparation method.

  • The changes of the most important quality parameters of szegedien triticale cultivars in long-term fertilization trials
    21-26
    Views:
    241

    We were monitoring the quality changes of 2 triticale cultivars from Szeged (GK Rege and GK Szemes) in Fülöpszállás, Hungary, in a longterm fertilizer trial in 2012/2013 and 2013/2014. The following fertilizer combinations were used: untreated control, single applied N and single applied PK, 30 and 60 kg ha-1 N or PK, and N and PK together in 30:30, 60:60 ha-1 ratio. We measured the following quality parameters: kernel hardness, crude protein content and farinograph quality number for wholemeal flour.

    Based on the results, the N fertilization treatment was beneficial to the tested triticale culticars in terms of kernel hardness and protein content as both indicators increased. The efficiency of the treatment was proportional to the N dose rate. On the other hand, the applied PK treatment decreased the kernel hardness and crude protein values. On these two parameters, the PK free, and high N dosage treatment (N60P0K0) had the most positive effect. However, the single applied N dose had no significant effect on farinograph quality numbers of the wholemeal flours, but PK dose had significantly positive impact on the tested cultivars. The N30P30K30 treatment resulted in the highest farinograph quality number, thus the low PK and low N combination was the most efficient treatment. The correlation analysis of the tested quality parameters showed positive correlation (0.9965***) between kernel hardness values and crude protein contents. Nevertheless, we found strong negative correlation between kernel hardness values and the farinograph quality number of the wholemeal flours (-0.9720***), as well as in the case of crude protein contents and farinograph quality number of the wholemeal flours (-0.9796***).