Search

Published After
Published Before

Search Results

  • Variability examination of photosynthetic pigment content and specific leaf area in individual maize (Zea mays L.) plants
    153-157
    Views:
    204

    Currently, maize is one of the most important crops (Zea mays L.) both globally and in Hungary. We compared physiological parameters of a maize genotype – p9903 – at two different experimental sites in a field experiment. Furthermore, we examined these parameters’ variability in individual plants on the leaves with different ages. Absolute chlorophyll content of the leaves were analysed, separately that of chlorophyll a and chlorophyll b. We also measured the absolute carotenoid contents of leaves. Furthermore, we calculated these photosynthetic pigments’ content ratio. Specific leaf area (SLA) and dry matter weight were also measured in order to characterise plant production. The results obviously reflect the decreasing in the efficiency of photosynthetic apparatus on the low yield site. Otherwise, we identify significant differences only in certain cases of leaves.

  • Microgreen leaf vegetable production by different wavelengths
    79-84
    Views:
    146

    Microgreens are becoming more popular in gastronomy, especially as a salad ingredient. In this study, two plant species belonging to the cabbage family were grown as microgreens, namely red cabbage and broccoli. Three different light-emitting diodes (LEDs) were used in the experiment, blue, red, and combined (blue:red) lighting. The experiment was carried out by 118 µmol-2 s-1total Photosynthetic Photon Flux (PPF), LED lighting was applied for 16 hours a day. Blue light primarily stimulates leaf growth, while red light promotes flowering. In our experiment, blue and combined lighting favorably affected plant development, yield (~3000 g m-2), chlorophyll-a (~8.0 mg g-1), and carotenoid content (9.0 mg g-1). However, the red light resulted in reduced harvest yields (~2200 g m-2), chlorophyll-a (~6.0 mg g-1), and carotenoid content (~7.0 mg g-1). The development of red cabbage was favorably influenced by the blue spectrum, while the combined spectrum favorably influenced the development of broccoli.

  • Examination of the effect of pelleted poultry manure products on a sunflower test plant in a laboratory model experiment
    83-88
    Views:
    164

    Sunflower (Helianthus annuus L.) is one of the most important oil plants in Hungary, with a sown area of more than 627.000 ha in 2019. Sunflower cultivation is primarily important for use in the oil industry, but its role in feed and beekeeping cannot be neglected either. Sunflower adapts well to different production areas in terms of soil demand, yet, as important fact, it must be grown on soils with poorer conditions with intensive nutrient replenishment. From the agri-environmental point of view, in addition to the use of pelleted poultry manure products, which are also new to the consumer market, is of paramount importance. Their advantages include a wide range of nutrients as well as a soil structure improving effect.

    In our research, we investigated the starter effect of pelleted poultry manure products applied at different doses (200 kg ha-1 and 400 kg ha-1) on sandy soil with humus using a sunflower plant. The aim of our research to investigate the effect of using pelleted fertilizer products as starter fertilizers on sunflower plant germination, and investigate the effect of poultry manure products on soils.

    Based on our results, it can be stated that the pigment content (chlorophyll and carotenoid content) was positively influenced by the higher dose treatments (400 kg ha-1), thus increasing the photosynthetically active leaf area. Compared to the control, the carotenoid content in the test plants of the treatments increased, and the differences of this treatment proved to be significant (p<0.05). Our experiments supported the beneficial effect of pelleted poultry manure-based products in the soil-plant system.

  • Effect of different production types on the yield and ß-carotene content of sweet potato /cultivar Ásotthalmi- 12/
    45-49
    Views:
    126

    Production of sweet potato is extending in Hungary, despite the fact that there is no field-specific production technology. Therefore, many growers cannot utilize potential yields and quality. The goal of this study was to determine the optimal production method of the Ásotthalmi 12, a Hungarian sweet potato cultivar which can adapt to the Hungarian climate. The effect of single and twin rows production on the yield of this cultivar was examined. The planting was carried out on June 24th, the harvesting on October 20th and the growing-season was 120 days long. Uniform nutrient supply was applied to the whole field experiment. During basic fertilization, 206 kg Knd 20 kg N, 36 kg P ha-1 were used on the soil. While forming the ridges, we used an additional 25 kg N, 45 kg P and 62.5 kg K ha-1. We adopted drip tape irrigation on the experimental field. After the planting, from the 8th week of the vegetation, another 21 kg ha-1 K, 10 kg ha-1 MgSO4, and 2 kg ha-1 Ca(NO3)2 was added in one dosage weekly, until the 13th week of vegetation. At the evaluation of the experiment, we examined the yield regarding the whole experimental plot. SPAD and fluorescence measurements were carried out on 08.16. 2019, 08.28.2019, and on 09.13.2019, during the watering break. To demonstrate the difference between the dates, we applied ANOVA and Tukey post-hoc tests. For the measurement of phytonutrients HPLC, a liquid chromatograph was used, where the carotenoid content of the Ásotthalmi 12 cultivar was determined in connection with the different production methods. Test results showed that twin rows production leads to a nearly 30% greater yield, than single row production. We determined, that the growth of yield correlates negatively to the ß-carotene content of the Ásotthalmi 12 cultivar sweet potato.

  • Preliminary studies to evaluate the use of spectral data in monitoring of apple orchard parameters
    37-41
    Views:
    91

    The introduction/application of precision agricultural technologies has more important role in various fruit growing sectors among others apple growing. Remote sensing methods can detect electromagnetic waves where the green colour of the leaf is responsible for the chlorophyll content. The absorption of chlorophyll is in the wavelength range of 450–670 nm. Samples of apple tree leaves were taken on a weekly basis from the apple orchard at Horticultural Unit of Pallag on University of Debrecen in 2019 summer. Our studies were performed on 2 cultivars (Early Gold, Golden Reinders) and the samples were processed using 2 methodologies: a non-destructive spectral method and spectrophotometric method chlorophyll and carotenoid contents were calculated, which were created into some groups and compared with the spectral values. When the plant begins to lose strong green colour and turns yellow spectral measurements show that chlorophyll content decreases as the proportion of chlorophyll-carotenoid in the plant changes.  In case of grouping into intervals, it can be observed that as the chlorophyll content increases the reflectance value decreases continuously due to the strong absorption. Based on the results, close relationship between the pigments can be detected.