Search

Published After
Published Before

Search Results

  • Study of the effects of silicon and sulphur foliar fertilization on yield components and yield in different winter oat cultivars
    43-49
    Views:
    96

    The aim of this work was to study the effect of sulphur and silicon foliar fertilisation treatment in different Hungarian-bred winter oat cultivars on the yield and the yield components, e.g. panicle ear-1 numbers per square meters, number of panicle nodes, number of spikelets per panicle, and thousand kernel weight (TKW) in the 2022–2023 growing season. The obtained results show that the applied fertilisers influenced the measured parameters, and we get the highest yield at the combined treatment – where silicon and sulphur was both applied –, and unexpectedly the lowest when only silicon was applied during the growing period. We measured the highest number of panicles m-2 at the sulphur treated experimental plots, and the lowest at the silicon treatment. We measured the average number of nodes of the panicle, and we can say that the sulphur fertilisation caused significantly higher values than any other treatment. Talking about the spikelet numbers, we get the highest value at the sulphur fertilisation, and the lowest at the control plots. However, our result wasn’t that prominent in the case of TKW, we get the highest weight at the silicon treatment, and the lowest at the sulphur fertilisation.

  • Basil (Ocimum basilicum L.) harvest and plant replacement methods in aquaponia
    91-98
    Views:
    146

    The aim of the study is to investigate the potential of basil leaf mass production under aquaponic conditions with different harvest and plant replacement methods. Aquaponics is a combination of soil-less crop production hydroponics and aquaculture and it is can use and clean the wastewater of intensive aquaculture systems. Three groups were established in the 6 units during the six-week harvest and seedling rotation cycles. Group 1 individuals remain in the units throughout the breeding season. Group 2 individuals were replaced every 12 weeks, while Group 3 individuals were replaced every six weeks, at the same time as harvest. Data from the experiment were analysed to determine how the harvest and replacement protocol of basil plants influences the amount of leaves harvested, the percentage of leaves harvested relative to the plant stem, and the changes in plant height, SPAD and NDVI during harvest and replacement. A continuously maintained and harvested healthy basil stock under aquaponic conditions can provide a consistent leaf mass all year round without the extra cost of replacing and producing seedlings.

  • The effect of different sowing depth on the yield and yield-forming elements of maize
    173-176
    Views:
    85

    On a global scale, maize is an important food, feed and industrial crop, with an increasing production area (Nagy, 2007 and 2021). Among the environmental impacts, extreme weathering factors caused by climate change are causing serious problems for crop stability, and maize is no exception.

    Precision farming is today's most innovative agrotechnical approach, which can greatly increase crop safety and reduce costs by exploiting the genetic potential of our soils and the hybrids we use (Torres, 2012).

    Sowing is one of the most important agrotechnical elements, and with good seeding we can ensure that we have all the requirements of a high yielding, high growing crop (Pepó, 2019). In the case of sowing, it is important to place the seed in moist soil to provide the optimum environmental conditions for the crop to ensure uniform emergence (Széles et al., 2020; Shrestha et al., 2018).

    Precision planting is the market leading technology in precision planters in the United States, and when cooperating with them we looked for methods to optimise the depth of sowing and to monitor the effect on yield by studying the initial development of the plants. The seeder was equipped with the company's SmartFirmer soil scanner integrated into the seed drill. Automatic seed depth adjustment based on soil moisture is an exceptional solution for uniform emergence and drought protection.

  • Studies on the Fusarium stalk rot infection of the maize genotypes using the Findex percentage and a computerised image analysis program
    45-51
    Views:
    115

    In a continental climate, the pathogens causing the most serious problems are species belonging to the Fusarium genus. When the pathogen attacks the stalk, the plant dies earlier, reducing grain filling and resulting in small, light ears. In addition, the stalks break or lodge, resulting in further yield losses from ears that cannot be harvested. During the three years of the experiment, 14 inbred lines were examined. The genotypes were sown in a two-factor split-plot design with four replications, with the genotypes in the main plots and four treatments in the subplots: two Fusarium graminearum isolates (1. FG36, 2. FGH4), 3. sterile kernels, 4. untreated control. The results experiments showed significant differences between the genotypes for resistance to fusarium stalk rot. Among the inbred lines the best resistance to fusarium stalk rot was exhibited by P06 and P07, both of which were related to ISSS. The precision and sensitivity of disease evaluations carried out visually and using image analysis software were compared in the experiment, and with two exceptions the CV values were lower for the image analysis. As the CV for measurements can be considered as a relative error, it can be stated that image analysis is the more precise of the two methods, so this technique gives a more accurate picture of the extent of stalk rot. The extent of stalk rot developing in response to natural infection is extremely environment-dependent, so the use of artificial inoculation is recommended for selection trials. 

  • Biostimulant induce growth, chlorophyll content and fresh herbage yield of alfalfa (Medicago sativa L.) and variegated alfalfa (Medicago × varia Martyn) plant
    19-25
    Views:
    109

    The use of biostimulants is associated with promoting plant growth by stimulating cell division and improving nutrient availability and uptake. A study was conducted at the University of Debrecen, Hungary, to examine the effect of biostimulants on alfalfa growth, chlorophyll content and fresh herbage yield. The experiment was arranged in a randomised complete block design with three biostimulant treatments plus control replicated three times. Data collected were subjected to analyses of variance using Genstat, where significantly different means were separated at a probability of 5% using the least significant difference. The findings show no different variation in plant height or chlorophyll content (SPAD) throughout the early stages of growth. Nonetheless, a notable impact was noted in the latter stages (28 days after biostimulant treatment application) on the growth of the alfalfa plant. Biostimulant treatments did not had effect on fresh yield for second through fourth cuts, but the fifth cut showed a significant effect, with T1 treatment recording the highest herbage yield of 19745 kg ha-1 followed by T2 (Tricho Immun plus Ino Green) and T3 (Tricho Immun), with yields of 19528 kg ha-1 and 17273 kg ha-1, respectively, while the T0 (control) recorded the lowest herbage yield of 12060 kg ha-1. However, the average mean yield indicated the application of biostimulants significantly increased fresh yield herbage by 20.5%. Correlation coefficient values suggested plant height at both 14 and 28 DAH (days after harvest) strongly correlated with fresh herbage yield (r = 0.7756 and 0.7455) which reflected in the increase in fresh herbage yield. Therefore, our results suggest that the use of biostimulants in alfalfa cultivation holds promise for improving growth and yield potential through their positive effects on chlorophyll content and the growth of alfalfa plant.

  • Inhibition of the spread of Sclerotinia sclerotiorum in aquaponics
    5-8
    Views:
    289

    Sclerotinia sclerotiorum, which causes white mold, is a widespread pathogen. In 2020, a new host plant of this fungus, the watercress (Nasturtium officinale) was identified in Hungary in an aquaponic system. During the cultivation of watercress S. sclerotiorum was detected on the plant, the fungus caused a 30% yield loss. Fungicides should not be used against fungi in aquaponic systems. Non-chemical methods of integrated pest management should be used. These include biological control (resistant species, predators, pathogens, antagonist microorganisms), manipulation of physical barriers, traps, and the physical environment. In the aquaponic system, the removal of the growing medium (expanded clay aggregate pellets) solved the damage of Sclerotinia sclerotiorum 100%. By removing the expanded clay aggregate pellets, the environmental conditions became unfavorable for the development and further spread of the S. sclerotium fungus.

  • The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
    143-147
    Views:
    186

    In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.

    Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.

    The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.

    In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.

    The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.

    However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.

    As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.